1
|
Ramadaini T, Sumiwi SA, Febrina E. The Anti-Diabetic Effects of Medicinal Plants Belonging to the Liliaceae Family: Potential Alpha Glucosidase Inhibitors. Drug Des Devel Ther 2024; 18:3595-3616. [PMID: 39156483 PMCID: PMC11330250 DOI: 10.2147/dddt.s464100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Background Diabetes mellitus is a complex metabolic disorder that has an enormous impact on people's quality of life and health. Although there is no doubt about the effectiveness of oral hypoglycemic agents combined with lifestyle management in controlling diabetes, no individual has ever been reported to have been completely cured of the disease. Globally, many medicinal plants have been used for the management of diabetes in various traditional systems of medicine. A deep look in the literature has revealed that the Liliaceae family have been poorly investigated for their antidiabetic activity and phytochemical studies. In this review, we summarize medicinal plants of Liliaceae utilized in the management of type II diabetes mellitus (T2DM) by inhibition of α-glucosidase enzyme and phytochemical content. Methods The literature search was conducted using databases including PubMed, ScienceDirect, and Google Scholar to find the significant published articles about Liliaceae plants utilized in the prevention and treatment of antidiabetics. Data were filtered to the publication period from 2013 to 2023, free full text and only English articles were included. The keywords were Liliaceae OR Alliaceae OR Amaryllidaceae AND Antidiabetic OR α-glucosidase. Results Six medicinal plants such as Allium ascalonicum, Allium cepa, Allium sativum, Aloe ferox, Anemarrhena asphodeloides, and Eremurus himalaicus are summarized. Phytochemical and α-glucosidase enzymes inhibition by in vitro, in vivo, and human studies are reported. Conclusion Plants of Liliaceae are potential as medicine herbs to regulating PPHG and prevent the progression of T2DM and its complication. In silico study, clinical application, and toxicity evaluation are needed to be investigated in the future.
Collapse
Affiliation(s)
- Tiara Ramadaini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
2
|
Zhang Y, Zhang XY, Shi SR, Ma CN, Lin YP, Song WG, Guo SD. Natural products in atherosclerosis therapy by targeting PPARs: a review focusing on lipid metabolism and inflammation. Front Cardiovasc Med 2024; 11:1372055. [PMID: 38699583 PMCID: PMC11064802 DOI: 10.3389/fcvm.2024.1372055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Inflammation and dyslipidemia are critical inducing factors of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and control the expression of multiple genes that are involved in lipid metabolism and inflammatory responses. However, synthesized PPAR agonists exhibit contrary therapeutic effects and various side effects in atherosclerosis therapy. Natural products are structural diversity and have a good safety. Recent studies find that natural herbs and compounds exhibit attractive therapeutic effects on atherosclerosis by alleviating hyperlipidemia and inflammation through modulation of PPARs. Importantly, the preparation of natural products generally causes significantly lower environmental pollution compared to that of synthesized chemical compounds. Therefore, it is interesting to discover novel PPAR modulator and develop alternative strategies for atherosclerosis therapy based on natural herbs and compounds. This article reviews recent findings, mainly from the year of 2020 to present, about the roles of natural herbs and compounds in regulation of PPARs and their therapeutic effects on atherosclerosis. This article provides alternative strategies and theoretical basis for atherosclerosis therapy using natural herbs and compounds by targeting PPARs, and offers valuable information for researchers that are interested in developing novel PPAR modulators.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, China
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Yun-Peng Lin
- Department of General Surgery, Qixia Traditional Chinese Medicine Hospital in Shandong Province, Yantai, China
| | - Wen-Gang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Ren J, Fang H, Yang L, Sun H, Song H, Yan G, Han Y, Wang X. Fecal metabolomics analysis for deciphering the lipid-lowering effect of Qizhi capsule on high-fat feed induced hyperlipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116270. [PMID: 36806341 DOI: 10.1016/j.jep.2023.116270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qizhi capsule (QZC), a Chinese patent drug, has been utilized to treat hyperlipidemia. AIM OF STUDY The present study aims to investigate the lipid-lowering effect of QZC, as well as the mechanism of action for treating hyperlipidemia. MATERIALS AND METHODS High-fat diet (HFD) induced hyperlipidemia rats were administrated with different doses of QZC for 28 days, and atorvastatin calcium tablets was used as the positive control. Serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were used to evaluate the effectiveness of QZC treatment. The metabolic profiles of feces were analyzed by UPLC-MS-based metabolomics approach coupled with multivariate data analysis. RESULTS The levels of serum TC, TG, LDL-C, and HDL-C were significantly reversed in QZC treatment groups, showing a similar or even better treatment effect compared with the atorvastatin calcium group. Thirty-two potential fecal biomarkers related to hyperlipidemia were identified. QZC could partially recover the disturbed metabolic pathways of alpha-linolenic acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. Meanwhile, the signal pathways of regulation of lipid metabolism by peroxisome proliferator-activated receptor α (PPARα), PPARα activates gene expression, and transcriptional regulation of white adipocyte differentiation can be also regulated by QZC. CONCLUSION The lipid-lowering effect of QZC was confirmed by both serum biochemistry and metabolomics analysis. The beneficial effects of QZC were mainly attributed to the correction of metabolic disorders and the maintenance of the dynamic balance of metabolites.
Collapse
Affiliation(s)
- Junling Ren
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Heng Fang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Hongwei Song
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
4
|
Fan S, Guo D, Zhang J, Yang Y, Xue H, Xue T, Bai B. Structure, physicochemical properties, antioxidant, and hypoglycemic activities of water‐soluble polysaccharides from millet bran. J Food Sci 2022; 87:5263-5275. [DOI: 10.1111/1750-3841.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sanhong Fan
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Dingyi Guo
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Jinhua Zhang
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Yukun Yang
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| | - Hugui Xue
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Tengda Xue
- School of Life Science Shanxi University Taiyuan Shanxi China
| | - Baoqing Bai
- School of Life Science Shanxi University Taiyuan Shanxi China
- Shanxi Key Laboratory for Research and Development of Regional Plants Taiyuan Shanxi China
| |
Collapse
|
5
|
An Insight into Antihyperlipidemic Effects of Polysaccharides from Natural Resources. Molecules 2022; 27:molecules27061903. [PMID: 35335266 PMCID: PMC8952498 DOI: 10.3390/molecules27061903] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia is a chronic metabolic disease caused by the abnormal metabolism of lipoproteins in the human body. Its main hazard is to accelerate systemic atherosclerosis, which causes cerebrovascular diseases such as coronary heart disease and thrombosis. At the same time, although the current hypolipidemic drugs have a certain therapeutic effect, they have side effects such as liver damage and digestive tract discomfort. Many kinds of polysaccharides from natural resources possess therapeutic effects on hyperlipidemia but still lack a comprehensive understanding. In this paper, the research progress of natural polysaccharides on reducing blood lipids in recent years is reviewed. The pharmacological mechanisms and targets of natural polysaccharides are mainly introduced. The relationship between structure and hypolipidemic activity is also discussed in detail. This review will help to understand the value of polysaccharides in lowering blood lipids and provide guidance for the development and clinical application of new hypolipidemic drugs.
Collapse
|