1
|
Zhang YP, Wang X, Shen Y, Thakur K, Zhang JG, Hu F, Wei ZJ. Preparation and Characterization of Bio-Nanocomposites Film of Chitosan and Montmorillonite Incorporated with Ginger Essential Oil and Its Application in Chilled Beef Preservation. Antibiotics (Basel) 2021; 10:antibiotics10070796. [PMID: 34208813 PMCID: PMC8300780 DOI: 10.3390/antibiotics10070796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, bio-nanocomposite films containing different proportions of ginger essential oil (GEO), chitosan (Ch), and montmorillonite (MMT) were prepared and characterized, and the antibacterial effect of bio-nanocomposite films on chilled beef was evaluated. Fourier transform infrared analysis showed a series of intense interactions among the components of the bio-nanocomposite films. The infiltration of GEO increased the thickness of the film, reduced the tensile strength of the film, and increased the percentage of breaking elongation and the water vapor permeability. The migration of phenols in the films began to increase exponentially and reached equilibrium at about 48 h. The bio-nanocomposite films (Ch +0.5% GEO group, and Ch + MMT + 0.5% GEO group) effectively delayed the rise of pH, hue angle, and moisture values of chilled beef with time and slowed down the lipid oxidation and the growth of surface microorganisms on chilled beef. Altogether, the prepared biological nanocomposites can be used as promising materials to replace commercial and non-degradable plastic films.
Collapse
Affiliation(s)
- Yin-Ping Zhang
- Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei 230031, China;
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
| | - Yi Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
- Correspondence: (F.H.); (Z.-J.W.)
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; (X.W.); (Y.S.); (K.T.); (J.-G.Z.)
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
- Correspondence: (F.H.); (Z.-J.W.)
| |
Collapse
|