1
|
Pinky, Sharma A, Arora V, Rao EP, Arava S, Agrawal AK, Jassal M, Mohanty S. Modulating the hAM/PCL Biocomposite for Expedited Wound Healing: A Chemical-Free Approach for Boosting Regenerative Potential. ACS Biomater Sci Eng 2024; 10:3842-3854. [PMID: 38754076 DOI: 10.1021/acsbiomaterials.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
There is an arising need for effective wound dressings that retain the bioactivity of a cellular treatment, but without the high costs and complexities associated with manufacturing, storing, and applying cell-based products. As skin wound recovery is a dynamic and complicated process, a significant obstacle to the healing of skin wounds is the lack of an appropriate wound dressing that can imitate the microenvironment of healthy skin and prevent bacterial infection. It requires the well-orchestrated integration of biological and molecular events. In this study, we have fabricated full-thickness skin graft biocomposite membranes to target full-thickness skin excision wounds. We reinforced human amniotic membrane (hAM) with electrospun polycaprolactone (PCL) to develop composite membranes, namely, PCL/hAM and PCL/hAM/PCL. Composite membranes were compared for physical, biological, and mechanical properties with the native counterpart. PCL/hAM and PCL/hAM/PCL displayed improved stability and delayed degradation, which further synergically improved the rapid wound healing property of hAM, driven primarily by wound closure analysis and histological assessment. Moreover, PCL/hAM displayed a comparable cellular interaction to hAM. On application as a wound dressing, histological analysis demonstrated that hAM and PCL/hAM promoted early epidermis and dermis formation. Studies on in vivo wound healing revealed that although hAM accelerates cell development, the overall wound healing process is similar in PCL/hAM. This finding is further supported by the immunohistochemical analysis of COL-1/COL-3, CD-31, and TGF-β. Overall, this conjugated PCL and hAM-based membrane has considerable potential to be applied in skin wound healing. The facile fabrication of the PCL/hAM composite membrane provided the self-regenerating wound dressing with the desired mechanical strength as an ideal regenerative property for skin tissue regeneration.
Collapse
Affiliation(s)
- Pinky
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Aarushi Sharma
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Varun Arora
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - E Pranshu Rao
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashwini K Agrawal
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manjeet Jassal
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
2
|
Li Y, Luo X, Yang M, Su B. Alleviation of Oxidative Stress during Hemodialysis Sessions by Hemodialysis Membrane Innovation: A Multidisciplinary Perspective. Blood Purif 2023; 52:905-916. [PMID: 37748453 DOI: 10.1159/000533656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Oxidative stress is prevalent in end-stage kidney disease patients receiving chronic hemodialysis and is associated with heavy cardiovascular disease burdens and increased mortality risks. Hemoincompatible hemodialysis membranes per se contribute to the activation of oxidative reactions and the generation of oxygen free radicals. Since the early 1990s, vitamin E-coated membranes have been extensively used in hemodialysis patients to reduce oxidative stress during hemodialysis sessions. However, the beneficial effects of vitamin E-coated membranes versus unmodified synthetic membranes on long-term patient-centered outcomes, such as survival, quality of life, and prevalence of cardiovascular diseases, remain controversial. Accordingly, novel antioxidant hemodialysis membranes were prepared to replace the use of vitamin E-coated membranes despite the translational research on these membranes unfortunately coming to a standstill. In this review, we first summarize the state-of-the-art on the use of vitamin E-coated membranes in hemodialysis patients to highlight their strengths and limitations. Then, we discuss the latest advances in fabricating antioxidant hemodialysis membranes and provide perspectives to bridge knowledge gaps between laboratorial investigations and clinical practice in fabricating antioxidant hemodialysis membranes.
Collapse
Affiliation(s)
- Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China,
| | - Xinyao Luo
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Yang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Nephrology, The First People's Hospital of Shuangliu District, Chengdu, China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Materials, Sichuan University, Chengdu, China
- Med+ Biomaterial Institute of West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zheng Z, Dai X, Li X, Du C. Functionalization of PCL-based nanofibers loaded with hirudin as blood contact materials. BIOMATERIALS ADVANCES 2023; 149:213416. [PMID: 37058780 DOI: 10.1016/j.bioadv.2023.213416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Blood-contacting materials with good mechanical property, excellent anticoagulant function and promoting effect on endothelialization are in great demand for clinical application such as vascular grafts in treating cardiovascular diseases. In this study, electrospinning nanofiber scaffolds of polycaprolactone (PCL) were functionalized by oxidative self-polymerization of dopamine (PDA) on the surface followed by the modification of anticoagulant recombinant hirudin (rH) molecules. The morphology, structure, mechanical property, degradation behavior, cellular compatibility and blood compatibility of the multifunctional PCL/PDA/rH nanofiber scaffolds were evaluated. The diameter of the nanofibers was between 270-1030 nm. The ultimate tensile strength of the scaffolds was around 4 MPa and the elastic modulus increased with the amount of rH. The degradation tests in vitro indicated that the nanofiber scaffolds began to crack on the 7th day, but still maintained the nanoscale architecture within a month. The cumulative release of rH from the nanofiber scaffold was up to 95.9 % at 30th day. The functionalized scaffolds promoted the adhesion and proliferation of endothelial cells, while resisting platelet adhesion and enhancing anticoagulation effects. The hemolysis ratios of all scaffolds were <2 %. The nanofiber scaffolds are promising candidates for vascular tissue engineering.
Collapse
|
4
|
Moghaddaszadeh A, Seddiqi H, Najmoddin N, Abbasi Ravasjani S, Klein-Nulend J. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics. Biomed Mater 2021; 16. [PMID: 34670200 DOI: 10.1088/1748-605x/ac3147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022]
Abstract
A challenging approach of three-dimensional (3D)-biomimetic scaffold design for bone tissue engineering is to improve scaffold bioactivity and mechanical properties. We aimed to design and fabricate 3D-polycaprolactone (PCL)-based nanocomposite scaffold containing a high concentration homogeneously distributed carbonated-nanohydroxyapatite (C-nHA)-particles in combination with immobilized-collagen to mimic real bone properties. PCL-scaffolds without/with C-nHA at 30%, 45%, and 60% (wt/wt) were 3D-printed. PCL/C-nHA60%-scaffolds were surface-modified by NaOH-treatment and collagen-immobilization. Physicomechanical and biological properties were investigated experimentally and by finite-element (FE) modeling. Scaffold surface-roughness enhanced by increasing C-nHA (1.7 - 6.1-fold), but decreased by surface-modification (0.6-fold). The contact angle decreased by increasing C-nHA (0.9 - 0.7-fold), and by surface-modification (0.5-fold). The zeta potential decreased by increasing C-nHA (3.2-9.9-fold). Average elastic modulus, compressive strength, and reaction force enhanced by increasing C-nHA and by surface-modification. FE modeling revealed that von Mises stress distribution became less homogeneous by increasing C-nHA, and by surface-modification. Maximal von Mises stress for 2% compression strain in all scaffolds did not exceed yield stress for bulk-material. 3D-printed PCL/C-nHA60% with surface-modification enhanced pre-osteoblast spreading, proliferation, collagen deposition, alkaline phosphatase activity, and mineralization. In conclusion, a novel biomimetic 3D-printed PCL-scaffold containing a high concentration C-nHA with surface-modification was successfully fabricated. It exhibited superior physicomechanical and biological properties, making it a promising biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Ali Moghaddaszadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Seddiqi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 LA, The Netherlands
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 LA, The Netherlands
| |
Collapse
|
5
|
Alentiev AY, Bogdanova YG, Dolzhikova VD, Belov NA, Nikiforov RY, Alentiev DA, Karpov GO, Bermeshev MV, Borovkova NV, Evseev AK, Makarov MS, Goroncharovskaya IV, Storozheva MV, Zhuravel SV. The Evaluation of the Hemocompatibility of Polymer Membrane Materials for Blood Oxygenation. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [PMCID: PMC7713669 DOI: 10.1134/s2517751620060025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- A. Yu. Alentiev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yu. G. Bogdanova
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - V. D. Dolzhikova
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - N. A. Belov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - R. Yu. Nikiforov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - D. A. Alentiev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - G. O. Karpov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - M. V. Bermeshev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - N. V. Borovkova
- Sklifosovsky Research Institute of Emergency Medicine, 129090 Moscow, Russia
| | - A. K. Evseev
- Sklifosovsky Research Institute of Emergency Medicine, 129090 Moscow, Russia
| | - M. S. Makarov
- Sklifosovsky Research Institute of Emergency Medicine, 129090 Moscow, Russia
| | | | - M. V. Storozheva
- Sklifosovsky Research Institute of Emergency Medicine, 129090 Moscow, Russia
| | - S. V. Zhuravel
- Sklifosovsky Research Institute of Emergency Medicine, 129090 Moscow, Russia
| |
Collapse
|