1
|
Liu C, Liu W, Lu H, Fan Y, Wang A. Effects of Baicalin on Gout Based on Network Pharmacology, Molecular Docking, and in vitro Experiments. J Inflamm Res 2025; 18:1543-1556. [PMID: 39925939 PMCID: PMC11806711 DOI: 10.2147/jir.s480911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Purpose Baicalin is a flavonoid of Scutellaria baicalensis Georgi. It possesses antipyretic, analgesic, and anti-inflammatory effects. It has great potential to treat gout. A network pharmacology approach, molecular docking and experimental validation were applied to investigate the pharmacological mechanisms of baicalin in treating gout. Methods The potential targets of baicalin were retrieved from the TCMSP, PharmMapper, STITCH, and Swiss Target Prediction databases. The gout-related targets were retrieved from the DrugBank, TTD, and Genecards databases. Then, the potential targets and signaling pathways were acquired via protein-protein interaction (PPI), as well as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, the key targets were selected to dock with baicalin based on molecular docking. Finally, in vitro experiments were conducted to further validate the predictions. Results A total of 318 potential targets of baicalin and 752 gout-related targets were screened. TNF, VEGFA, MMP9, PTGS2, and TLR4 might be the hub therapeutic target genes. The TLR4/NF-κB signaling pathway might be the foremost pathway in baicalin against gout. Moreover, molecular docking showed that baicalin combined well with TNF, VEGFA, MMP9, COX-2, and TLR4, respectively. The results of cell experiments suggested that baicalin could reduce the levels of inflammatory cytokines by inhibiting the TLR4/NF-κB signaling pathway in MSU-stimulated THP-1 cells and regulate the expression of these hub targets. Conclusion These results revealed that baicalin possesses "multitarget, multipathway, multilevel" regulatory effects. From a therapeutic standpoint, baicalin may be a promising anti-inflammatory agent for alleviating gout.
Collapse
Affiliation(s)
- Chunliu Liu
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
- Department of Respiratory Medicine, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People’s Republic of China
| | - Wei Liu
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Hang Lu
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Yihua Fan
- Department of Rheumatism and Immunity, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, People’s Republic of China
| | - Aihua Wang
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| |
Collapse
|
2
|
Chen Y, Chen Z, Wang W, Hua Y, Ji M. Spatiotemporal Observation of Monosodium Urate Crystals Deposition in Synovial Organoids Using Label-Free Stimulated Raman Scattering. RESEARCH (WASHINGTON, D.C.) 2024; 7:0373. [PMID: 38803506 PMCID: PMC11128648 DOI: 10.34133/research.0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
Gout, a common form of arthritis, is characterized by the deposition of monosodium urate (MSU) crystals in joints. MSU deposition in synovial tissues would initiate arthritis flares and recurrence, causing irreversible joint damage. However, the dynamic deposition of MSU crystals in tissues lacks experimental observation. In this study, we used chemical-specific, label-free stimulated Raman scattering (SRS) microscopy to investigate the spatiotemporal deposition and morphological characteristics of MSU crystals in human synovial organoids. Our findings revealed a critical 12-h window for MSU deposition in the lining layer of gouty synovium. Moreover, distinctive inflammatory reactions of the lining and sublining synovial layers in gout using SRS microscopy were further verified by immunofluorescence. Importantly, we identified a crucial proinflammatory role of sublining fibroblast-like synoviocytes, indicating a need for targeted medication treatment on these cells. Our work contributes to the fundamental understanding of MSU-based diseases and offers valuable insights for the future development of targeted gout therapies.
Collapse
Affiliation(s)
- Yaxin Chen
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation,
Fudan University, Shanghai 200433, China
| | - Ziyi Chen
- Department of Sports Medicine, Huashan Hospital,
Fudan University, Shanghai, China
| | - Wenjuan Wang
- Department of Sports Medicine, Huashan Hospital,
Fudan University, Shanghai, China
| | - Yinghui Hua
- Department of Sports Medicine, Huashan Hospital,
Fudan University, Shanghai, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation,
Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Effect of nanoparticles on gouty arthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord 2023; 24:124. [PMID: 36788552 PMCID: PMC9926759 DOI: 10.1186/s12891-023-06186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE The purpose of this study was to explore the effects of nanoparticles on gouty arthritis, and to provide evidence for the preclinical application of nanoparticles in gouty arthritis and ideas for nanomedicine improvement for nanoparticle researchers. METHODS Five databases including the Cochrane Library, PubMed, Scopus, Web of Science, and Embase were searched for eligible studies until April 2022. The quality of the selected studies was assessed by SYRCLE's risk of bias (RoB) tool, and the random-effects model was used to calculate the overall effect sizes of weighted mean differences (WMD). RESULTS Ten studies met the inclusion criteria. Results showed that nanoparticles were effective in reducing uric acid levels (WMD: -4.91; 95% confidence interval (CI): - 5.41 to - 4.41; p < 0.001), but were not better than allopurinol (WMD: -0.20; 95% CI: - 0.42 to 0.02; p = 0.099). It was worth noting that the nanoparticles were safer than allopurinol. Subgroup analyses indicated that nanoparticle encapsulated substance, animal species, nanoparticle dosage, animal quantity, and animal gender were all sources of heterogeneity. CONCLUSION The nanoparticles are safe medications for gouty arthritis which can effectively reduce uric acid levels in rodents. Although the results are still uncertain, it is expected to have certain clinical application value. The nanoparticles may be the preclinical medications for gouty arthritis in the future.
Collapse
|
4
|
Identification of Interleukin-1-Beta Inhibitors in Gouty Arthritis Using an Integrated Approach Based on Network Pharmacology, Molecular Docking, and Cell Experiments. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2322417. [PMID: 36193152 PMCID: PMC9526673 DOI: 10.1155/2022/2322417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Background This study aimed to investigate the molecular mechanism of Tongfengding capsule (TFDC) in treating immune-inflammatory diseases of gouty arthritis (GA) and interleukin-1-beta (IL-1β) inhibitors by using network pharmacology, molecular docking, and cell experiments. Methods In this study, the compounds of TFDC and the potential inflammatory targets of GA were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Online Mendelian Inheritance in Man (OMIM), and GeneCards databases. The TFDC-GA-potential targets interaction network was accomplished by the STRING database. The TFDC-active compound-potential target-GA network was constructed using Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to further explore the GA mechanism and therapeutic effects of TFDC. Quantitative real-time PCR (qPCR) was used to verify whether the TFDC inhibited IL-1β in GA. Molecular docking technology was used to analyze the optimal effective compounds from the TFDC for docking with IL-1β. Result 133 active compounds and 242 targets were screened from the TFDC, and 25 of the targets intersected with GA inflammatory targets, which were considered as potential therapeutic targets. Network pharmacological analysis showed that the TFDC active compounds such as quercetin, stigmasterol, betavulgarin, rutaecarpine, naringenin, dihydrochelerythrine, and dihydrosanguinarine had better correlation with GA inflammatory targets such as PTGS2, PTGS1, NOS2, SLC6A3, HTR3A, PPARG, MAPK14, RELA, MMP9, and MMP2. The immune-inflammatory signaling pathways of the active compounds for treating GA are IL-17 signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, HIF-1 signaling pathway, etc. The TFDC reduced IL-1β mRNA expression in GA by qPCR. Molecular docking results suggested that rutaecarpine was the most appropriate natural IL-1β inhibitor. Conclusion Our findings provide an essential role and bases for further immune-inflammatory studies on the molecular mechanisms of TFDC and IL-1β inhibitors development in GA.
Collapse
|
5
|
Yao MX, Cheng JY, Liu Y, Sun J, Hua DX, He QY, Liu HY, Fu L, Zhao H. Cross-sectional and longitudinal associations of serum Cysteine-rich 61 with severity and prognosis among community-acquired pneumonia patients in China. Front Med (Lausanne) 2022; 9:939002. [PMID: 36035395 PMCID: PMC9403795 DOI: 10.3389/fmed.2022.939002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCysteine-rich 61 (CYR61) is implicated in many pulmonary diseases. However, the relationship between CYR61 and community-acquired pneumonia (CAP) patients was unknown. This research aimed to estimate the correlations of serum CYR61 with severity and prognosis in CAP patients through a prospective cohort study.MethodsAll 541 CAP patients were enrolled in this study. Fasting venous blood was collected. Clinical characteristics and demographic information were obtained. CYR61 and inflammatory cytokines were detected in serum using ELISA.ResultsSerum CYR61 was gradually increased in parallel with severity scores in CAP patients. Correlative analysis indicated that serum CYR61 was strongly associated with many clinical parameters in CAP patients. Moreover, mixed logistic and linear regression models found that there were positive correlations between serum CYR61 and CAP severity scores after adjusted for age, BMI, and respiratory rate. Stratified analyses suggested that age affected the associations between serum CYR61 and severity scores. On admission, higher serum CYR61 levels elevated the risks of mechanical ventilation, vasoactive agent, ICU admission, death, and longer hospital stays during hospitalization. Moreover, serum CYR61 in combination with severity scores upregulated the predictive capacities for severity and death than single serum CYR61 or severity scores in CAP patients.ConclusionThere are significantly positive dose-response associations of serum CYR61 on admission with the severity and adverse prognostic outcomes, demonstrating that CYR61 is involved in the pathophysiology of CAP. Serum CYR61 may be used as a potential biomarker for the diagnosis and prognosis in CAP patients.
Collapse
Affiliation(s)
- Meng-Xing Yao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Yi Cheng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dong-Xu Hua
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi-Yuan He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Yan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Toxicology, Anhui Medical University, Hefei, China
- *Correspondence: Lin Fu, ;
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hui Zhao,
| |
Collapse
|
6
|
Tan ZX, Fu L, Wang WJ, Zhan P, Zhao H, Wang H, Xu DX. Serum CYR61 Is Associated With Airway Inflammation and Is a Potential Biomarker for Severity in Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2021; 8:781596. [PMID: 34917638 PMCID: PMC8669148 DOI: 10.3389/fmed.2021.781596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Cysteine-rich 61 (CYR61) and inflammation was upregulated in the lungs of patients with chronic obstructive pulmonary disease (COPD). However, the association between CYR61 and inflammation was unclear in COPD patients. This study aimed to analyze the association of serum CYR61 with pulmonary inflammation and lung function indexes in COPD patients. Methods: One hundred and fifty COPD patients and 150 control subjects were enrolled. Serum and pulmonary CYR61 was detected. Lung function indexes were evaluated in COPD patients. Results: Serum CYR61 level was elevated and pulmonary CYR61 expression was upregulated in COPD patients. An increased CYR61 was associated with decreased pulmonary function indexes in COPD patients. Further analyses showed that nuclear factor-kappa B (NF-κB) p65-positive nuclei was elevated in the lungs of COPD patients with high level of CYR61. Accordingly, serum monocyte chemotactic protein (MCP)-1 and tumor necrosis factor α (TNF-α), two downstream inflammatory cytokines of NF-κB pathway, were increased in parallel with CYR61, among which serum MCP-1 and TNF-α were the highest in COPD patients with high level of CYR61. Moreover, a positive correlation, determined by multivariate regression that excluded the influence of age, gender and smoking, was observed between serum CYR61 and inflammatory cytokines in COPD patients. Conclusion: These results provide evidence that an increased CYR61 is associated with pulmonary inflammation and COPD progression. Inflammatory cytokines may be the mediators between CYR61 elevation and COPD progression.
Collapse
Affiliation(s)
- Zhu-Xia Tan
- Department of Toxicology, Anhui Medical University, Hefei, China
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Wen-Jing Wang
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ping Zhan
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|