1
|
Dimitrova PD, Ivanova V, Trendafilova A, Paunova-Krasteva T. Anti-Biofilm and Anti-Quorum-Sensing Activity of Inula Extracts: A Strategy for Modulating Chromobacterium violaceum Virulence Factors. Pharmaceuticals (Basel) 2024; 17:573. [PMID: 38794143 PMCID: PMC11123807 DOI: 10.3390/ph17050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The formation of microbial biofilm is a self-organizing process among bacterial cells, regulated by quorum-sensing (QS) mechanisms, contributing to development of infections. These processes, either separately or in combination, significantly contribute to bacterial resistance to antibiotics and disinfectants. A novel approach to addressing the challenge of treating infections due to antibacterial resistance involves the use of plant metabolites. In recent years, there has been increasing recognition of different phytochemicals as potential modulators. In our study, we evaluated the synergistic effect of chloroform and methanol extracts from Inula species against key virulence factors, including biofilm formation, violacein production, and swarming motility. Each of the 11 examined plant extracts demonstrated the ability to reduce biofilms and pigment synthesis in C. violaceum. Two of the extracts from I. britannica exhibited significant anti-biofilm and anti-quorum-sensing effects with over 80% inhibition. Their inhibitory effect on violacein synthesis indicates their potential as anti-QS agents, likely attributed to their high concentration of terpenoids (triterpenoids, sesquiterpene lactones, and diterpenoids). Scanning electron microscopy revealed a notable reduction in biofilm biomass, along with changes in biofilm architecture and cell morphology. Additionally, fluorescence microscopy revealed the presence of metabolically inactive cells, indicating the potent activity of the extracts during treatment. These new findings underscore the effectiveness of the plant extracts from the genus Inula as potential anti-virulent agents against C. violaceum. They also propose a promising strategy for preventing or treating its biofilm formation.
Collapse
Affiliation(s)
- Petya D. Dimitrova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. Bl. 26, 1113 Sofia, Bulgaria;
| | - Viktoria Ivanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (V.I.); (A.T.)
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (V.I.); (A.T.)
| | - Tsvetelina Paunova-Krasteva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. Bl. 26, 1113 Sofia, Bulgaria;
| |
Collapse
|
2
|
Panayi T, Sarigiannis Y, Mourelatou E, Hapeshis E, Papaneophytou C. Anti-Quorum-Sensing Potential of Ethanolic Extracts of Aromatic Plants from the Flora of Cyprus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192632. [PMID: 36235498 PMCID: PMC9572961 DOI: 10.3390/plants11192632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 06/03/2023]
Abstract
Quorum sensing (QS) is a form of intra- and inter-species communication system employed by bacteria to regulate their collective behavior in a cell population-dependent manner. QS has been implicated in the virulence of several pathogenic bacteria. This work aimed to investigate the anti-QS potential of ethanolic extracts of eight aromatic plants of Cyprus, namely, Origanum vulgare subsp. hirtum, Rosmarinus officinalis, Salvia officinalis, Lavendula spp., Calendula officinalis, Melissa officinalis, Sideritis cypria, and Aloysia citriodora. We initially assessed the effects of the extracts on autoinducer 2 (AI-2) signaling activity, using Vibrio harveyi BB170 as a reported strain. We subsequently assessed the effect of the ethanolic extracts on QS-related processes, including biofilm formation and the swarming and swimming motilities of Escherichia coli MG1655. Of the tested ethanolic extracts, those of Origanum vulgare subsp. hirtum, Rosmarinus officinalis, and Salvia officinalis were the most potent AI-2 signaling inhibitors, while the extracts from the other plants exhibited low to moderate inhibitory activity. These three ethanolic extracts also inhibited the biofilm formation (>60%) of E. coli MG1655, as well as its swimming and swarming motilities, in a concentration-dependent manner. These extracts may be considered true anti-QS inhibitors because they disrupt QS-related activities of E. coli MG1655 without affecting bacterial growth. The results suggest that plants from the unexplored flora of Cyprus could serve as a source for identifying novel anti-QS inhibitors to treat infectious diseases caused by pathogens that are resistant to antibiotics.
Collapse
|
3
|
Devi S, Chhibber S, Harjai K. Optimization of cultural conditions for enhancement of anti-quorum sensing potential in the probiotic strain Lactobacillus rhamnosus GG against Pseudomonas aeruginosa. 3 Biotech 2022; 12:133. [PMID: 35615747 DOI: 10.1007/s13205-022-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
Disruption of quorum sensing (QS) system, which is a central regulator for pathogenesis of Pseudomonas aeruginosa, is referring to as quorum quenching (QQ). This study was undertaken to evaluate and enhance the anti-quorum sensing (AQS) potential of probiotic strain Lactobacillus rhamnosus GG. The cell-free supernatant (CFS) of this probiotic strain showed anti-quorum sensing activity against Pseudomonas aeruginosa, which was determined using well-diffusion agar-plate assay. Anti-quorum sensing potential of L. rhamnosus GG was enhanced by optimization of various cultural conditions using classical and statistical optimization approaches. Six variables were optimized using one-variable-at-a-time (OVAT) method. Four significant variables, viz., temperature, pH, incubation time, metal ion, and its concentration, were chosen for further optimization by response surface methodology (RSM) using central composite design (CCD). Analysis of variance (ANOVA) demonstrated that the regression model is highly significant, as indicated by F test with a low probability value (p < 0.0002) and high value of coefficient of determination (0.8738) and also had significant influence on the generation of anti-quorum sensing effector molecules. Maximum production of anti-quorum sensing activity, in terms of zones of inhibition, was achieved under the following optimized conditions such as 37 °C temperature, pH 6.5, incubation time 24 h, and 2.5 mM concentration of zinc sulfate (ZnSO4). The quadratic model predicted 1.3-fold increase anti-quorum sensing activity production over un-optimized cultural conditions. The present research is the first report representing the enhancement of anti-quorum sensing potential of L. rhamnosus GG. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03187-2.
Collapse
|
4
|
Salama AM, Behaery MS, Elaal AEA, Abdelaal A. Influence of cerium oxide nanoparticles on dairy effluent nitrate and phosphate bioremediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:326. [PMID: 35381908 PMCID: PMC8983513 DOI: 10.1007/s10661-022-10003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study investigated, for the first time, the role of cerium oxide nanoparticles (CeO2 NPs) on dairy effluent nitrate and phosphate bioremediation using different inoculum sources. Two inoculum sources (wastewater and sludge) were obtained from the dairy wastewater treatment plant unit. A culture was prepared to be tested in the treatment of nitrate and phosphate effluent, and the role of CeO2 NPs was checked to be completely efficient after 5 days of incubation. The reduction efficiency of nitrate using sludge as inoculum source was improved up to 89.01% and 68.12% for phosphate compared to control. In the case of using wastewater as an inoculum source, the nitrate reduction was improved up to 83.30% and 87.75% for phosphate compared to control. The bacterial richness showed a significant variance (higher richness) between control and other samples. The optimal concentration of CeO2 NPs for inoculum richness and nitrate and phosphate reduction was (sludge: 1 × 10-10 ppm) and (wastewater: 1 × 10-12 ppm). The results revealed that CeO2 NPs could enhance the microbial growth of different inoculum sources that have a key role in dairy effluent nitrate and phosphate bioremediation.
Collapse
Affiliation(s)
- Abeer M Salama
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Moktar S Behaery
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Amira E Abd Elaal
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Ahmed Abdelaal
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| |
Collapse
|
5
|
Peerzada Z, Kanhed AM, Desai KB. Effects of active compounds from Cassia fistula on quorum sensing mediated virulence and biofilm formation in Pseudomonas aeruginosa. RSC Adv 2022; 12:15196-15214. [PMID: 35693228 PMCID: PMC9116959 DOI: 10.1039/d1ra08351a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa infections are attributed to its ability to form biofilms and are difficult to eliminate with antibiotic treatment.
Collapse
Affiliation(s)
- Zoya Peerzada
- Sunandan Divatia School of Science, SVKM'S NMIMS (Deemed to be University), Mumbai-400056, India
| | - Ashish M. Kanhed
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University, Mumbai-400056, India
| | - Krutika B. Desai
- SVKM's Mithibai College of Arts, Chauhan Institute of Science, Amrutben Jivanlal College of Commerce and Economics, Mumbai, 400056, India
| |
Collapse
|
6
|
Saral A, Kanekar S, Koul KK, Bhagyawant SS. Plant growth promoting bacteria induce anti-quorum-sensing substances in chickpea legume seedling bioassay. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1577-1595. [PMID: 34366598 PMCID: PMC8295451 DOI: 10.1007/s12298-021-01034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 05/22/2023]
Abstract
UNLABELLED Microorganisms and their hosts communicate through an array of signals. Many physiological processes regulated in quorum sensing (QS) are dependent on auto-inducers, like N-acyl-homoserine lactones (AHLs) as in numerous groups of both gram-positive and gram-negative bacteria. In vitro grown seven-day old chickpea seedlings treated with plant growth promoting bacteria (PGPRs) were used to screen the AHL mimicking and for phytochemical substances like phytohormones and secondary metabolites such as phenolics and flavonoids. Potential anti-quorum sensing (anti-QS) activity surrounding the roots on semi-solid agar lawn of Chromobacterium violaceum (ATCC12742) was observed. Crude protein (4.46-8.30 μg/mL) and methanolic extracts (100 μg/mL) of seedling gave moderate anti-QS activity against CV12742 anti QS bioassay, respectively. Crude protein and methanolic extract of Bacillus amyloliquefaciens (34.00 ± 2.23; 34.00 ± 4.33 mm) and B. subtilis A (27.00 ± 2.10; 3.29 ± 2.16 mm) treated samples showed higher zone of inhibition due to anti-QS activity. Phytohormone analysis using LC-MS for zeatin, auxin and methyl jasmonate (MeJA) indicated that phytohormones were significantly upregulated by 1909.80 ng/g FW, 669.67 ng/g FW and 244.55 ng/g FW, respectively in Pseudomonas brassicacearum treated seedlings compared to control. UHPLC of PGPR treated seedlings showed overly expressed gallic acid, protocatechuic acid, catechin, p-hydroxybenzoic acid, caffeic acid, catechol, vanillin, and ferulic acid in B. amyloliquefaciens treated seedlings compared to others. Enrichment analysis identified significant pathways related to metabolism, biosynthesis of secondary metabolites. The present study indicates that chickpea neutralizes an extensive range of functional responses to AHLs that may play important role in legume host-microbe interactions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01034-x.
Collapse
Affiliation(s)
- Anamika Saral
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474011 India
| | - Saptami Kanekar
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore, India
| | - Kirtee Kumar Koul
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474011 India
| | | |
Collapse
|
7
|
Nazareth MS, Shreelakshmi SV, Shetty NP. Identification and Characterization of Polyphenols from Carissa spinarum Fruit and Evaluation of Their Antioxidant and Anti-quorum Sensing Activity. Curr Microbiol 2021; 78:1277-1285. [PMID: 33634411 DOI: 10.1007/s00284-021-02381-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Quorum sensing controls bacterial virulence through signaling molecules, which plays a vital role in managing foodborne pathogens that cause food spoilage and human infections. Though many synthetic compounds have been used to control infection, antibiotic resistance has become a global issue. Targeting the bacterial quorum sensing using the bioactive compounds could be an alternative strategy to combat their resistance. In this context, polyphenols from an unexplored unripe and ripe fruits of Carissa spinarum were evaluated for anti-quorum sensing activity. The study aimed at determining nutritional, phytochemical composition, and polyphenol profiling to evaluate their antioxidant potential of the fruit. Furthermore, the violacein inhibition, anti-biofilm, and effect on the motility of foodborne pathogens were also studied. The phytochemical content of C. spinarum fruit showed the phenolic and flavonoid content 273.20 mg GAE/100 g and 453.78 mg QE/100 g fresh weight , respectively, in ripe fruit. HPLC characterization of fruit extracts showed high content of syringic acid, resveratrol, and quercetin in ripe, whereas it showed epicatechin and gentisic acid in unripe fruit. The antioxidant activity of the ripe fruit extract exhibited a higher potential to scavenge DPPH radicals with IC50 4.69 mg/mL. Further, the anti-quorum sensing activity was higher in ripe fruit extract at 1.8 mg/mL inhibited with 78.65% violacein production in Chromobacterium violaceum, swimming motility, and biofilm formation in Pseudomonas aeruginosa and Yersinia enterocolitica (66.25% and 59.36% respectively at 1.2 mg/mL). Hence C. spinarum fruit bioactive could be a natural plant source for anti-quorum sensing activity to manage foodborne pathogens over synthetic compounds.
Collapse
Affiliation(s)
- Maria Sheeba Nazareth
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India
- University of Mysore, Mysuru, 570 005, India
| | - S V Shreelakshmi
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India
| | - Nandini P Shetty
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India.
- University of Mysore, Mysuru, 570 005, India.
| |
Collapse
|