1
|
Ma S, Xu W, Fei Y, Li D, Jia X, Wang J, Wang E. Mn 2+ /Ir 3+ -Doped and CaCO 3 -Covered Prussian Blue Nanoparticles with Indocyanine Green Encapsulation for Tumor Microenvironment Modulation and Image-Guided Synergistic Cancer Therapy. Adv Healthc Mater 2023; 12:e2301413. [PMID: 37657182 DOI: 10.1002/adhm.202301413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The development of smart theranostic nanoplatforms has gained great interest in effective cancer treatment against the complex tumor microenvironment (TME), including weak acidity, hypoxia, and glutathione (GSH) overexpression. Herein, a TME-responsive nanoplatform named PMICApt /ICG, based on PB:Mn&Ir@CaCO3 Aptamer /ICG, is designed for the competent synergistic photothermal therapy and photodynamic therapy (PDT) under the guidance of photothermal and magnetic resonance imaging. The nanoplatform's aptamer modification targeting the transferrin receptor and the epithelial cell adhesion molecule on breast cancer cells, and the acid degradable CaCO3 shell allow for effective tumor accumulation and TME-responsive payload release in situ. The nanoplatform also exhibits excellent PDT properties due to its ability to generate O2 and consume antioxidant GSH in tumors. Additionally, the synergistic therapy is achieved by a single wavelength of near-infrared laser. RNA sequencing is performed to identify differentially expressed genes, which show that the expressions of proliferation and migration-associated genes are inhibited, while the apoptosis and immune response gene expressions are upregulated after the synergistic treatments. This multifunctional nanoplatform that responds to the TME to realize the on-demand payload release and enhance PDT induced by TME modulation holds great promise for clinical applications in tumor therapy.
Collapse
Affiliation(s)
- Shuaining Ma
- College of Physics, Jilin University, Changchun, Jilin, 130012, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Weiguo Xu
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yunwei Fei
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
2
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Zhong W, Yue K, Wang A, Zhang G, Wang J, Wang L, Wang H, Zhang H, Zhang X. Mechanisms of deformation and drug release of targeting polypeptides based on fibronectin induction. Colloids Surf B Biointerfaces 2022; 219:112836. [PMID: 36115264 DOI: 10.1016/j.colsurfb.2022.112836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
Polypeptide nano-carriers with deformation and sustained-release function have gained an attention in anti-tumor treatment. A multifunctional polypeptide with different motifs was discussed and the contribution of each motif to targeted drug release was analyzed by control studies. The transformation and drug release processes of polypeptides were investigated by molecular dynamics method to reveal their dynamics mechanism, and corresponding experiments were performed to verify the simulation results. We observed that the polypeptides could form NPs under the hydrophobic interaction between self-assembly motifs and the electrostatic repulsion between targeting motifs. Affected by the ligand-receptor interaction, the targeting motifs overcame the electrostatic repulsion to approach the ligand proteins, leading to the promotion of the binding of fibrous motifs and the transformation of NPs into NFs for better retention of drugs in the tumor tissues. In addition, the polypeptides with strong hydrophobicity exhibited excellent sustained-release efficiency. These insights allow drawing general conclusions contributed to the design of transformable polypeptide NPs: The decrease in the hydrophobicity of self-assembly motifs is beneficial for the enrichment of doxorubicin in tumor tissues, as well as the similar result can be obtained with the improvement of the hydrophobicity of fibrous motifs and the capability of target.
Collapse
Affiliation(s)
- Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China.
| | - Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| | - Jiaqi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin 150001, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| |
Collapse
|
4
|
Huang Y, Cao L, Parakhonskiy BV, Skirtach AG. Hard, Soft, and Hard- and-Soft Drug Delivery Carriers Based on CaCO 3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. Pharmaceutics 2022; 14:909. [PMID: 35631494 PMCID: PMC9146629 DOI: 10.3390/pharmaceutics14050909] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Because free therapeutic drug molecules often have adverse effects on normal tissues, deliver scanty drug concentrations and exhibit a potentially low efficacy at pathological sites, various drug carriers have been developed for preclinical and clinical trials. Their physicochemical and toxicological properties are the subject of extensive research. Inorganic calcium carbonate particles are promising candidates as drug delivery carriers owning to their hardness, porous internal structure, high surface area, distinctive pH-sensitivity, low degradability, etc, while soft organic alginate hydrogels are also widely used because of their special advantages such as a high hydration, bio-adhesiveness, and non-antigenicity. Here, we review these two distinct substances as well as hybrid structures encompassing both types of carriers. Methods of their synthesis, fundamental properties and mechanisms of formation, and their respective applications are described. Furthermore, we summarize and compare similarities versus differences taking into account unique advantages and disadvantages of these drug delivery carriers. Moreover, rational combination of both carrier types due to their performance complementarity (yin-&yang properties: in general, yin is referred to for definiteness as hard, and yang is broadly taken as soft) is proposed to be used in the so-called hybrid carriers endowing them with even more advanced properties envisioned to be attractive for designing new drug delivery systems.
Collapse
Affiliation(s)
| | - Lin Cao
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Andre G. Skirtach
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
5
|
Fadia P, Tyagi S, Bhagat S, Nair A, Panchal P, Dave H, Dang S, Singh S. Calcium carbonate nano- and microparticles: synthesis methods and biological applications. 3 Biotech 2021; 11:457. [PMID: 34631356 PMCID: PMC8497680 DOI: 10.1007/s13205-021-02995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium carbonate micro- and nanoparticles are considered as chemically inert materials. Therefore, they are widely considered in the field of biosensing, drug delivery, and as filler material in plastic, paper, paint, sealant, and adhesive industries. The unusual properties of calcium carbonate-based nanomaterials, such as biocompatibility, high surface-to-volume ratio, robust nature, easy synthesis, and surface functionalization, and ability to exist in a variety of morphologies and polymorphs, make them an ideal candidate for both industrial and biomedical applications. Significant research efforts have been devoted for developing novel synthesis methods of calcium carbonate particles in micrometer and nanometer dimensions. This review highlights different approaches of the synthesis of calcium carbonate micro- and nanoparticles, such as precipitation, slow carbonation, emulsion, polymer-mediated method, including in-situ polymerization, mechano-chemical, microwave-assisted method, and biological methods. The applications of these versatile calcium carbonate micro- and nanoparticles in the biomedical field (such as in drug delivery, therapeutics, tissue engineering, antimicrobial activity, biosensing applications), in industries, and environmental sector has also been comprehensively covered.
Collapse
Affiliation(s)
- Preksha Fadia
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Simona Tyagi
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Stuti Bhagat
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
| | - Abhishek Nair
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Pooja Panchal
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Harsh Dave
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sadev Dang
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sanjay Singh
- Division of Biological and Life Sciences, Nanomaterials and Toxicology Laboratory, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009 India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032 India
| |
Collapse
|
6
|
Liu X, Wu Y, Zhao X, Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr Polym 2021; 267:118179. [PMID: 34119147 DOI: 10.1016/j.carbpol.2021.118179] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
Organic-inorganic hybrid materials like bone, shells, and teeth can be found in nature, which are usually composed of biomacromolecules and nanoscale inorganic ingredients. Synergy of organic-inorganic components in hybrid materials render them outstanding and versatile performance. Chitosan is commonly used organic materials in bionic hybrid materials since its bioactive properties and could be controllable tailored by various means to meet complex conditions in different applications. Among these fabrication means, hybridization was favored for its convenience and efficiency. This review discusses three kinds of chitosan-based hybrid materials: hybridized with hydroxyapatite, calcium carbonate, and clay respectively, which are the representative of phosphate, carbonate, and hydrous aluminosilicates. Here, we reported the latest developments of the preparation methods, composition, structure and applications of these bioactive hybrid materials, especially in the biomedical field. Despite the great progress was made in bioactive organic-inorganic hybrid materials based on chitosan, some challenges and specific directions are still proposed for future development in this review.
Collapse
Affiliation(s)
- Xiaoyang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxuan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinchen Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Sudareva N, Suvorova O, Saprykina N, Vlasova H, Vilesov A. Doxorubicin delivery systems based on doped CaCO 3 cores and polyanion drug conjugates. J Microencapsul 2021; 38:164-176. [PMID: 33430666 DOI: 10.1080/02652048.2021.1872724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In order to prolong the release and reduce the toxicity of anticancer drug - doxorubicin (DOX), delivery systems (DS) using different polyanions have been developed. Structural (size, morphological stability) and functional (encapsulation efficiency, DOX release) characteristics of three types of DS are compared: CaCO3 porous vaterites doped with polyanions by co-precipitation and coating techniques, and DOX-polyanion conjugates. Using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), it was shown that the doping enhances the morphological stability of CaCO3-based DS during the DOC loading. Doping of CaCO3 cores by co-precipitation reduces its sizes (up to 1 µm) and DOX encapsulation efficiency. Polyanion-coated CaCO3 cores and polyanion drug conjugates show about 98 w/w% DOX encapsulation. For the first time, it was shown that the release of DOX from developed DS into human blood plasma is more intense (from 1.3 to 3.0 times for different DS) than into model tumour environment.
Collapse
Affiliation(s)
- Natalia Sudareva
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia.,Pavlov Saint-Petersburg Medical University, Saint-Petersburg, Russia
| | - Olga Suvorova
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Natalia Saprykina
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Helen Vlasova
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alexander Vilesov
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia.,Pavlov Saint-Petersburg Medical University, Saint-Petersburg, Russia
| |
Collapse
|
8
|
Reig-Vano B, Tylkowski B, Montané X, Giamberini M. Alginate-based hydrogels for cancer therapy and research. Int J Biol Macromol 2020; 170:424-436. [PMID: 33383080 DOI: 10.1016/j.ijbiomac.2020.12.161] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Cancer is a major health issue concerning to all of us. Current treatment options are still limited due to not-selective action. Encapsulation is contemplated as an innovative approach to address systemic toxicity and tumor resistance caused by traditional therapies, while increasing encapsulated compounds bioavailability. The coating material of capsules strongly determines the success of the system. Since alginate has been proved non-toxic, biocompatible and biodegradable, it is considered a potential vehicle for therapeutic factors encapsulation. Besides, it has the particular ability to form hydrogels, which hold a high-water content and greatly resemble to natural soft tissues. The present review exposes the state-of-the-art and the most sophisticated alginate-based systems for cancer therapy and research. It begins with an overview of alginate hydrogels and the qualities that make them especially suitable for biomedical applications. In the following section, the application of alginate hydrogels as pioneering strategies for cancer treatment is described. Several examples of alginate-based delivery systems of therapeutic drugs, proteins and nucleic acids are provided. Significant emphasis is placed in both oral delivery systems and colorectal cancer therapy. Moreover, the role of alginate 3-D scaffolds for both cell culture and delivery is explained. Lastly, other applications of alginate-based hydrogels such as tumor biomarkers immunosensing and fluorescent surgical marker are included.
Collapse
Affiliation(s)
- Belen Reig-Vano
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| | - Xavier Montané
- Department of Analytic Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Carrer Marcel.lí Domingo s/n, Campus Sescelades, Tarragona 43007, Spain
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
| |
Collapse
|
9
|
Magnetic Colloidal Particles in Combinatorial Thin-Film Gradients for Magnetic Resonance Imaging and Hyperthermia. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/7163985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A stable oil-in-water (O/W) magnetic emulsion was prepared by the emulsification of organic ferrofluid in an aqueous media, and its theranostic applications were investigated. The synthesis and characterization of the organic ferrofluid were carried out comprising of superparamagnetic maghemite nanoparticles with oleic acid coating stabilized in octane. Both exhibit spherical morphology with a mean size of 6 nm and 200 nm, respectively, as determined by TEM. Thermogravimetric analysis was carried out to determine the chemical composition of the emulsion. The research work described here is novel and elaborates the fabrication of thin-film gradients with 5, 10, 15, and 20 bilayers by layer-by-layer technique using polydimethyl diallyl ammonium chloride (PDAC) and prepared magnetic colloidal particles. The thin-film gradients were characterized for their roughness, morphology, and wettability. The developed gradient films and colloids were explored in magnetic resonance imaging (MRI) and hyperthermia. T1- and T2-weighted images and their corresponding signal intensities were obtained at 1.5 T. A decreasing trend in signal intensities with an increase in nanoparticle concentration in colloids and along the gradient was observed in T2-weighted images. The hyperthermia capability was also evaluated by measuring temperature rise and calculating specific absorption rates (SAR). The SAR of the colloids at 259 kHz, 327 kHz, and 518 kHz were found to be 156 W/g, 255 W/g, and 336 W/g, respectively. The developed magnetic combinatorial thin-film gradients present a significant potential for the future efficient simultaneous diagnostic and therapeutic bioapplications.
Collapse
|