1
|
Liu Y, Liu Z, Xiong Z, Geng Y, Cui D, Pavlostathis SG, Chen H, Luo Q, Qiu G, Dong Q, Yang L, Shao P, Shi H, Luo X, Luo S. Synergistic optimization of baffles and aeration to improve the Light/Dark cycle of microalgae photobioreactor for enhanced nitrogen removal performance: Computational fluid dynamics and experimental verification. BIORESOURCE TECHNOLOGY 2024; 410:131293. [PMID: 39153688 DOI: 10.1016/j.biortech.2024.131293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Microalgae photobioreactor (PBR) is a kind of efficient wastewater treatment system for nitrogen removal. However, there is still an urgent need for process optimization of PBR. Especially, the synergistic effect and optimization of light and flow state poses a challenge. In this study, the computational fluid dynamics is employed for simulating the optimization of the number and length of the internal baffles, as well as the aeration rate of PBR, which in turn leads to the optimal growth of microalgae and efficient nitrogen removal. After optimization, the Light/Dark cycle of the reactor B is shortened by 51.6 %, and the biomass increases from 0.06 g/L to 3.94 g/L. In addition, the removal rate of NH4+-N increased by 106.0 % to 1.56 mg L-1 h-1. This work provides a feasible method for optimizing the design and operational parameters of PBR aiming the engineering application.
Collapse
Affiliation(s)
- Yuanqi Liu
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhuochao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yanni Geng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, United States
| | | | | | - Genping Qiu
- ECO-ADVANCE CO., LED, Ganzhou 341000, PR China
| | | | - Liming Yang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China.
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Shenglian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
2
|
Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, Ong HC. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. CHEMOSPHERE 2024; 353:141540. [PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Collapse
Affiliation(s)
- Manzoore Elahi M Soudagar
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand - 248002, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Tiong Sieh Kiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.
| | - Laxmikant Jathar
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Ramesh
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umesh Awasarmol
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
3
|
Chen S, Li X, Ma X, Qing R, Chen Y, Zhou H, Yu Y, Li J, Tan Z. Lighting the way to sustainable development: Physiological response and light control strategy in microalgae-based wastewater treatment under illumination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166298. [PMID: 37591393 DOI: 10.1016/j.scitotenv.2023.166298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/29/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
The Sustainable Development Goals link pollutant control with carbon dioxide reduction. Toward the goal of pollutant and carbon reduction, microalgae-based wastewater treatment (MBWT), which can simultaneously remove pollutants and convert carbon dioxide into biomass with value-added metabolites, has attracted considerable attention. The photosynthetic organism microalgae and the photobioreactor are the functional body and the operational carrier of the MBWT system, respectively; thus, light conditions profoundly influence its performance. Therefore, this review takes the general rules of how light influences the performance of MBWT systems as a starting point to elaborate the light-influenced mechanisms in microalgae and the light control strategies for photobioreactors from the inside out. Wavelength, light intensity and photoperiod solely or interactively affect biomass accumulation, pollutant removal, and value-added metabolite production in MBWT. Physiological processes, including photosynthesis, photooxidative damage, light-regulated gene expression, and nutrient uptake, essentially explain the performance influence of MBWT and are instructive for specific microalgal strain improvement strategies. In addition, light causes unique reactions in MBWT systems as it interacts with components such as photooxidative damage enhancers present in types of wastewater. In order to provide guidance for photobioreactor design and light control in a large-scale MBWT system, wavelength transformation, light transmission, light source distribution, and light-dark cycle should be considered in addition to adjusting the light source characteristics. Finally, based on current research vacancies and challenges, future research orientation should focus on the improvement of microalgae and photobioreactor, as well as the integration of both.
Collapse
Affiliation(s)
- Shangxian Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xinlei Ma
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Renwei Qing
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yadan Yu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junjie Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Bright as day and dark as night: light-dependant energy for lipid biosynthesis and production in microalgae. World J Microbiol Biotechnol 2022; 38:70. [PMID: 35257233 DOI: 10.1007/s11274-022-03245-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/08/2022] [Indexed: 10/18/2022]
Abstract
Microalgae are photosynthetic organisms functioning as the green bio-factories for various pharmaceutical and biofuel products. To date, numerous attempts have been carried out to manipulate culture conditions to maximize the production of the desired metabolites. Because light is the energy source of microalgae for their growth and metabolites biosynthesis, it has been one of the most investigated variables emphasized on the deep understanding of how microalgae respond towards light changes as an external stimulus. This review discusses the effects of different light sources, light intensities, light wavelengths and length of photoperiod on various microalgae species, especially in terms of biomass and lipid productivity. Additionally, the relationship between photoregulation processes and lipid productivity of microalgae are also deliberated. The current available approaches of microalgae mass cultivation, including different types of open and closed systems are recapitulated with the intention to highlight the significant insights for the design of future photoreactors.
Collapse
|
5
|
Li J, Tao Y, Li G, Feng C, Chen R, Hua M. Biological Processes for Pollution Control: Current Research and Emerging Technologies 2020. ARCHAEA (VANCOUVER, B.C.) 2021; 2021:9852531. [PMID: 34776792 PMCID: PMC8589500 DOI: 10.1155/2021/9852531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022]
Affiliation(s)
- Jin Li
- Qingdao University, Qingdao, China
| | - Yu Tao
- Chinese Academy of Sciences, Beijing, China
| | | | - Cuijie Feng
- Polytechnic University of Milan Piazza Leonardo da Vinci, Milan, Italy
| | - Rong Chen
- Xi'an University of Architecture and Technology, Xi'an, China
| | - Ming Hua
- Nanjing University, Nanjing, China
| |
Collapse
|