1
|
Saadh MJ, Ahmed HH, Chandra M, Al-Hussainy AF, Hamid JA, Mishra A, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA, Alsaikhan F, Farhood B, Akhavan-Sigari R. Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis. Cancer Cell Int 2025; 25:66. [PMID: 39994659 PMCID: PMC11854426 DOI: 10.1186/s12935-025-03694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE Oral malignancies are among the common head and neck cancers. Various therapeutic modalities are used for targeting oral cancers. It was shown that quercetin (a flavonoid) has an anti-cancer effect on different cancers. In the current study, the anti-cancer potentials of quercetin against oral cancer cells were summarized. METHODS The current systematic review was conducted in accordance with the PRISMA guideline for the identification of relevant studies in various electronic databases up to April 2023. After reviewing and screening 193 articles, 18 were chosen for this study based on our inclusion and exclusion criteria. RESULTS It was shown that quercetin significantly reduced cancer cell proliferation, cell viability, tumor volume, invasion, metastasis and migration. This anti-cancer agent induced oxidative stress and apoptosis in the cancer cells. Quercetin treatment could also induce some biochemical alterations in the cancer cells. CONCLUSION According to the results, it can be mentioned that quercetin administration has an anti-cancer effect against oral cancer cells. This agent exerts its anticancer effects via reduced cell viability and different mechanisms, including induce oxidative damage, apoptosis, and reduced invasion and metastasis. However, suggesting the use of quercetin as a therapeutic agent of oral cancer patients requires further clinical studies due to its poor absorption rates, and the exact molecular mechanisms are still not well understood.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India
| | | | | | - Anurag Mishra
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Reza Akhavan-Sigari
- Dr. Schneiderhan GmbH and ISAR Klinikum, Munich, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
2
|
Bache M, Kadler F, Struck O, Medenwald D, Ostheimer C, Güttler A, Keßler J, Kappler M, Riemann A, Thews O, Seliger B, Vordermark D. Correlation between Circulating miR-16, miR-29a, miR-144 and miR-150, and the Radiotherapy Response and Survival of Non-Small-Cell Lung Cancer Patients. Int J Mol Sci 2023; 24:12835. [PMID: 37629015 PMCID: PMC10454434 DOI: 10.3390/ijms241612835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Despite the success of current therapy concepts, patients with advanced non-small-cell lung cancer (NSCLC) still have a very poor prognosis. Therefore, biological markers are urgently needed, which allow the assessment of prognosis, or prediction of the success of therapy or resistance in this disease. Circulating microRNAs (miRs) have potential as biomarkers for the prognosis and prediction of response to therapy in cancer patients. Based on recent evidence that circulating miR-16, miR-29a, miR-144 and miR-150 can be regulated by ionizing radiation, the concentration of these four miRs was assessed in the plasma of NSCLC patients at different time points of radiotherapy by digital droplet PCR (ddPCR). Furthermore, their impact on patients' prognosis was evaluated. The mean plasma levels of miR-16, miR-29a, miR-144 and miR-150 significantly differed intra- and inter-individually, and during therapy in NSCLC patients, but showed a strong positive correlation. The individual plasma levels of miR-16, miR-29a and miR-144 had prognostic value in NSCLC patients during or at the end of radiotherapy in Cox's regression models. NSCLC patients with low levels of these three miRs at the end of radiotherapy had the worst prognosis. However, miR-150 plasma levels and treatment-dependent changes were not predictive. In conclusion, circulating miR-16, miR-29a and miR-144, but not miR-150, have a prognostic value in NSCLC patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany; (F.K.); (O.S.); (D.M.); (A.G.); (J.K.); (D.V.)
| | - Frauke Kadler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany; (F.K.); (O.S.); (D.M.); (A.G.); (J.K.); (D.V.)
| | - Olivia Struck
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany; (F.K.); (O.S.); (D.M.); (A.G.); (J.K.); (D.V.)
- Department of Radiology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Daniel Medenwald
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany; (F.K.); (O.S.); (D.M.); (A.G.); (J.K.); (D.V.)
| | - Christian Ostheimer
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany; (F.K.); (O.S.); (D.M.); (A.G.); (J.K.); (D.V.)
| | - Antje Güttler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany; (F.K.); (O.S.); (D.M.); (A.G.); (J.K.); (D.V.)
| | - Jacqueline Keßler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany; (F.K.); (O.S.); (D.M.); (A.G.); (J.K.); (D.V.)
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany;
| | - Anne Riemann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112 Halle, Germany; (A.R.); (O.T.)
| | - Oliver Thews
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112 Halle, Germany; (A.R.); (O.T.)
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 16, 06112 Halle, Germany;
- Institute for Translational Immunology, Brandenburg Medical School “Theodor Fontane”, 14770 Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany; (F.K.); (O.S.); (D.M.); (A.G.); (J.K.); (D.V.)
| |
Collapse
|
3
|
Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther 2022; 29:1105-1116. [PMID: 35082400 DOI: 10.1038/s41417-022-00427-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are known as promising sources for cancer therapy and can be utilized as vehicles in cancer gene therapy. MSC-derived exosomes are central mediators in the therapeutic functions of MSCs, known as the novel cell-free alternatives to MSC-based cell therapy. MSC-derived exosomes show advantages including higher safety as well as more stability and convenience for storage, transport and administration compared to MSCs transplant therapy. Unmodified MSC-derived exosomes can promote or inhibit tumors while modified MSC-derived exosomes are involved in the suppression of cancer development and progression via the delivery of several therapeutics molecules including chemotherapeutic drugs, miRNAs, anti-miRNAs, specific siRNAs, and suicide gene mRNAs. In most malignancies, dysregulation of miRNAs not only occurs as a consequence of cancer progression but also is directly involved during tumor initiation and development due to their roles as oncogenes (oncomiRs) or tumor suppressors (TS-miRNAs). MiRNA restoration is usually achieved by overexpression of TS-miRNAs using synthetic miRNA mimics and viral vectors or even downregulation of oncomiRs using anti-miRNAs. Similar to other therapeutic molecules, the efficacy of miRNAs restoration in cancer therapy depends on the effectiveness of the delivery system. In the present review, we first provided an overview of the properties and potentials of MSCs in cancer therapy as well as the application of MSC-derived exosomes in cancer therapy. Finally, we specifically focused on harnessing the MSC-derived exosomes for the aim of miRNA delivery in cancer therapy.
Collapse
|