1
|
Lu C, Chen C, Xu Y, Dai D, Sun C, Li Q. Activation of Wnt/β-catenin signaling to increase B lymphoma Moloney murine leukemia virus insertion region 1 by lithium chloride attenuates the toxicity of cisplatin in the HEI-OC1 auditory cells. Toxicol Lett 2024; 403:50-65. [PMID: 39608515 DOI: 10.1016/j.toxlet.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Cisplatin is widely used in anti-tumor therapy, but the ototoxicity caused by high-dose cisplatin often limits its efficacy, and the specific mechanism of cisplatin-induced cochlear damage is still not perfect. The Wnt/β-catenin signaling pathway is closely related to aging, embryonic development, and apoptosis. Meanwhile, B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1) plays a certain role in the evolution and development of the inner ear and the occurrence and development of inner ear-related diseases. Our study intends to explore the role and specific mechanism of the Wnt/β-catenin signaling pathway and BMI1 in improving cisplatin ototoxicity. The appropriate experimental concentrations for each drug were selected by CCK-8 cell proliferation assay and Western Blot to detect apoptosis. The lentivirus transfection of HEI-OC1 cochlear hair cells was used to overexpress BMI1. Western Blot, qPCR, and immunofluorescence detected the activation of each component of BMI1 and Wnt/β-catenin signaling pathway in each experimental model. Wnt/β-catenin signaling pathway and BMI1 are jointly involved in cisplatin-induced cell injury. Low lithium chloride (LiCl) concentrations activated the Wnt/β-catenin pathway, increased BMI1 expression, and reduced cisplatin-induced hair cell injury. In contrast, overexpression of BMI1 inhibited the Wnt/β-catenin pathway and reduced hair cell injury. Meanwhile, the increased cisplatin-induced damage to hair cells by inhibiting BMI1 could not be rescued by LiCl. In conclusion, LiCl can ameliorate cisplatin ototoxicity by elevating BMI1 expression through activation of the Wnt/β-catenin pathway. Overexpression of BMI1 inhibits the Wnt/β-catenin pathway and reduces cisplatin-induced hair cell damage.
Collapse
Affiliation(s)
- Chen Lu
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chao Chen
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yingpeng Xu
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dingyuan Dai
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chen Sun
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Qi Li
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China; Medical School of Nanjing University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
2
|
Cheng W, Tan L, Yu S, Song J, Li Z, Peng X, Wei Q, He Z, Zhang W, Yang X. Geniposide reduced oxidative stress-induced apoptosis in HK-2 cell through PI3K/AKT3/FOXO1 by m6A modification. Int Immunopharmacol 2024; 131:111820. [PMID: 38508092 DOI: 10.1016/j.intimp.2024.111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Exogenous hydrogen peroxide (H2O2) may generate excessive oxidative stress, inducing renal cell apoptosis related with kidney dysfunction. Geniposide (GP) belongs to the iridoid compound with anti-inflammatory, antioxidant and anti-apoptotic effects. This study aimed to observe the intervention effect of GP on H2O2-induced apoptosis in human kidney-2 (HK-2) cells and to explore its potential mechanism in relation to N6-methyladenosine (m6A) RNA methylation. Cell viability, apotosis rate and cell cycle were tested separately after different treatments. The mRNA and protein levels of m6A related enzymes and phosphoinositide 3-kinase (PI3K)/a serine/threonine-specific protein kinase 3 (AKT3)/forkhead boxo 1 (FOXO1) and superoxide dismutase 2 (SOD2) were detected by reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. The whole m6A methyltransferase activity and the m6A content were measured by ELISA-like colorimetric methods. The changes of m6A methylation levels of PI3K/AKT3/FOXO1 and SOD2 were determined by methylated RNA immunoprecipitation (MeRIP)-qPCR. Multiple comparisons were performed by ANOVA with Turkey's post hoc test. Exposed to 400 μmol/L H2O2, cells were arrested in G1 phase and the apoptosis rate increased, which were significantly alleviated by GP. Compared with the H2O2 apoptosis group, both the whole m6A RNA methyltransferase activity and the m6A contents were increased due to GP intervention. Besides, the SOD2 protein was increased, while PI3K and FOXO1 decreased. The m6A methylation level of AKT3 was negatively correlated with its protein level. Taken together, GP affects the global m6A methylation microenvironment and regulates the expression of PI3K/AKT3/FOXO1 signaling pathway via m6A modification, alleviating cell cycle arrest and apoptosis caused by oxidative stress in HK-2 cells with a good application prospect.
Collapse
Affiliation(s)
- Wenli Cheng
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Luyi Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Susu Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jia Song
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Ziyin Li
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Xinyue Peng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Qinzhi Wei
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Zhini He
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
3
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
4
|
Huang X, Kou X, Zhan T, Wei G, He F, Mao X, Yang H. Apoptotic vesicles resist oxidative damage in noise-induced hearing loss through activation of FOXO3a-SOD2 pathway. Stem Cell Res Ther 2023; 14:88. [PMID: 37061707 PMCID: PMC10105953 DOI: 10.1186/s13287-023-03314-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) transplantation is a promising therapeutic approach for noise-induced hearing loss (NIHL). As the indispensable role of apoptosis in MSC transplantation was raised, the benefits of MSC-derived apoptotic vesicles (apoVs) in several disease models have been proved. However, whether apoVs benefit in NIHL have not been studied yet. METHODS Female CBA/J mice and HEI-OC1 cells were used in this study. Flow cytometry, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were used to characterize apoVs. Proteomic analysis was used to identify function proteins in apoVs. Immunofluorescence was used to reveal distribution pattern. Auditory brainstem response (ABR) test was used to measure the effect of apoVs treatment. DCFH-DA staining and MitoSOX staining were used to indicate oxidative damage. Western-blot and qRT-PCR were used to study the signaling pathways. RESULTS We found that apoVs can be endocytosed by hair cells through systemic administration. Importantly, apoVs administration effectively attenuated NIHL and reduced hair cell loss by resisting oxidative damage in vivo. Further, apoVs application activated forkhead box o3 (FOXO3a)-mitochondrial superoxide dismutase 2(SOD2) pathway, which may relate to signal transduction and activators of transcription 3 (STAT3) in apoVs. CONCLUSIONS These findings uncovered the role of apoVs in preventing NIHL and resisting oxidative damage, indicating that apoVs is a promising way for inner ear delivery and a prospective cell-free therapy for NIHL.
Collapse
Affiliation(s)
- Xiaotong Huang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhan
- Department of Otolaryngology, Zhujiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510285, China
| | - Guokun Wei
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Feinan He
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Hearing and Speech Science, Guangzhou Xinhua University, Guangzhou, 510310, China.
| |
Collapse
|
5
|
Harrison RT, DeBacker JR, Trevino M, Bielefeld EC, Lobarinas E. Cochlear Preconditioning as a Modulator of Susceptibility to Hearing Loss. Antioxid Redox Signal 2022; 36:1215-1228. [PMID: 34011160 DOI: 10.1089/ars.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Acquired sensorineural hearing loss is a major public health problem worldwide. The leading causes of sensorineural hearing loss are noise, aging, and ototoxic medications, with the key underlying pathology being damage to the cochlea. The review focuses on the phenomenon of preconditioning, in which the susceptibility to cochlear injury is reduced by exposing the ear to a stressful stimulus. Recent Advances: Cochlear conditioning has focused on the use of mono-modal conditioning, specifically conditioning the cochlea with moderate noise exposures before a traumatic exposure that causes permanent hearing loss. Recently, cross-modal conditioning has been explored more thoroughly, to prevent not only noise-induced hearing loss, but also age-related and drug-induced hearing losses. Critical Issues: Noise exposures that cause only temporary threshold shifts (TTSs) can cause long-term synaptopathy, injury to the synapses between the inner hair cells and spiral ganglion cells. This discovery has the potential to significantly alter the field of cochlear preconditioning with noise. Further, cochlear preconditioning can be the gateway to the development of clinically deployable therapeutics. Therefore, understanding the underlying mechanisms of conditioning is crucial for optimizing clinical protection against sensorineural hearing loss. Future Directions: Before the discovery of synaptopathy, noise exposures that caused only TTSs were believed to be either harmless or potentially beneficial. Any considerations of preconditioning with noise must consider the potential for injury to the synapses. Further, the discovery of different methods to precondition the cochlea against injury will yield new avenues for protection against hearing loss in the vulnerable populations. Antioxid. Redox Signal. 36, 1215-1228.
Collapse
Affiliation(s)
- Ryan T Harrison
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - J Riley DeBacker
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - Monica Trevino
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - Edward Lobarinas
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
6
|
Metabolomics Analysis Reveals Alterations in Cochlear Metabolic Profiling in Mice with Noise-Induced Hearing Loss. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9548316. [PMID: 35686233 PMCID: PMC9173918 DOI: 10.1155/2022/9548316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
Noise-induced hearing loss (NIHL) has always been an important occupational hazard, but the exact etiopathogenesis underlying NIHL remains unclear. Herein, we aimed to find metabolic biomarkers involved in the development of NIHL based on a mouse model using a gas chromatography coupled with mass spectrometry (GC-MS) metabolomics technique. We showed that the auditory brainstem response (ABR) thresholds at the frequencies of 4, 8, 12, 16, 24, and 32 kHz were all significantly elevated in the noise-exposed mice. Noise could cause outer hair cell (OHC) loss in the base of the cochlea. A total of 17 differential metabolites and 9 metabolic pathways were significantly affected following noise exposure. Spermidine acting as an autophagy modulator was found to be 2.85-fold higher in the noise-exposed group than in the control group and involved in β-alanine metabolism and arginine and proline metabolism pathways. Additionally, we demonstrated that LC3B and Beclin1 were expressed in the spiral ganglion neurons (SGNs), and their mRNA levels were increased after noise. We showed that SOD activity was significantly decreased in the cochlea of noise-exposed mice. Further experiments suggested that SOD1 and SOD2 proteins in the SGNs were all decreased following noise exposure. The upregulation of spermidine may induce LC3B- and Beclin1-mediated autophagy in the cochlear hair cells (HCs) through β-alanine metabolism and arginine and proline metabolism and be involved in the NIHL. ROS-mediated oxidative damage may be a pivotal molecular mechanism of NIHL. Taken together, spermidine can be regarded as an important metabolic marker for the diagnosis of NIHL.
Collapse
|
7
|
Liang W, Zhao C, Chen Z, Yang Z, Liu K, Gong S. Sirtuin-3 Protects Cochlear Hair Cells Against Noise-Induced Damage via the Superoxide Dismutase 2/Reactive Oxygen Species Signaling Pathway. Front Cell Dev Biol 2021; 9:766512. [PMID: 34869361 PMCID: PMC8637754 DOI: 10.3389/fcell.2021.766512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial oxidative stress is involved in hair cell damage caused by noise-induced hearing loss (NIHL). Sirtuin-3 (SIRT3) plays an important role in hair cell survival by regulating mitochondrial function; however, the role of SIRT3 in NIHL is unknown. In this study, we used 3-TYP to inhibit SIRT3 and found that this inhibition aggravated oxidative damage in the hair cells of mice with NIHL. Moreover, 3-TYP reduced the enzymatic activity and deacetylation levels of superoxide dismutase 2 (SOD2). Subsequently, we administered adeno-associated virus-SIRT3 to the posterior semicircular canals and found that SIRT3 overexpression significantly attenuated hair cell injury and that this protective effect of SIRT3 could be blocked by 2-methoxyestradiol, a SOD2 inhibitor. These findings suggest that insufficient SIRT3/SOD2 signaling leads to mitochondrial oxidative damage resulting in hair cell injury in NIHL. Thus, ameliorating noise-induced mitochondrial redox imbalance by intervening in the SIRT3/SOD2 signaling pathway may be a new therapeutic target for hair cell injury.
Collapse
Affiliation(s)
- Wenqi Liang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongrui Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|