1
|
Chatzikalil E, Arvanitakis K, Filippatos F, Diamantopoulos PT, Koufakis T, Solomou EE. Diagnostic and Therapeutic Implications of the SUMOylation Pathway in Acute Myeloid Leukemia. Cancers (Basel) 2025; 17:631. [PMID: 40002226 PMCID: PMC11853134 DOI: 10.3390/cancers17040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Epigenetics encompasses heritable and stable changes in gene expression caused by external chromosomal modifications, without altering the underlying DNA sequence. Epigenetic modifications, established during early development and maintained through successive cell divisions, play a critical role in regulating gene expression. Post-translational modifications (PTMs) are a key aspect of epigenetics and are essential for modulating protein functionality, as well as regulatory cellular processes, including proliferation, differentiation, metabolic pathways, and tumorigenic events. Among these, the small ubiquitin-related modifier (SUMOylation) system is a reversible PTM mechanism that alters target protein interaction surfaces through covalent binding to lysine residues, thereby influencing protein structure and function. Acute myeloid leukemia (AML) is a highly aggressive malignancy characterized by the clonal expansion of primitive hematopoietic stem cells of the myeloid lineage in the bone marrow. Despite recent advancements in therapeutic strategies and an improved understanding of leukemogenic pathways, patient outcomes remain poor, particularly in elderly populations. Consequently, efforts have focused on developing novel agents, including co-targeting specific mutations or integrating targeted therapies into combinatorial chemotherapeutic regimens. Emerging evidence suggests that SUMOylation plays a significant role in AML pathogenesis and treatment response, representing a promising therapeutic target for advanced disease cases. This review provides a brief analysis of the functional role of the SUMOylation system in AML and highlights its potential as a therapeutic target. We also discuss current knowledge gaps and propose directions for future research to advance precision medicine approaches for AML treatment.
Collapse
Affiliation(s)
- Elena Chatzikalil
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Filippos Filippatos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece;
| |
Collapse
|
2
|
King KL, Abdollahi H, Dinkel Z, Akins A, Valafar H, Dunn H. Pilot study: Initial investigation suggests differences in EMT-associated gene expression in breast tumor regions. Comput Struct Biotechnol J 2025; 27:548-555. [PMID: 39981295 PMCID: PMC11840942 DOI: 10.1016/j.csbj.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype and disproportionately affects African American women. The development of breast cancer is highly associated with interactions between tumor cells and the extracellular matrix (ECM), and recent research suggests that cellular components of the ECM vary between racial groups. This pilot study aimed to evaluate gene expression in TNBC samples from patients who identified as African American and Caucasian using traditional statistical methods and emerging Machine Learning (ML) approaches. ML enables the analysis of complex datasets and the extraction of useful information from small datasets. We selected four regions of interest from tumor biopsy samples and used laser microdissection to extract tissue for gene expression characterization via RT-qPCR. Both parametric and non-parametric statistical analyses identified genes differentially expressed between the two ethnic groups. Out of 40 genes analyzed, 4 were differentially expressed in the edge of tumor (ET) region and 8 in the ECM adjacent to the tumor (ECMT) region. In addition to statistical approach, ML was used to generate decision trees (DT) for a broader analysis of gene expression and ethnicity. Our DT models achieved 83.33 % accuracy and identified the most significant genes, including CD29 and EGF from the ET region and SNAI1 and CHD2 from the ECMT region. All significant genes were analyzed for pathway enrichment using MSigDB and Gene Ontology databases, most notably the epithelial to mesenchymal transition and cell motility pathways. This pilot study highlights key genes of interest that are differentially expressed in African American and Caucasian TNBC samples.
Collapse
Affiliation(s)
- Kylie L. King
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Hamed Abdollahi
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Zoe Dinkel
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Alannah Akins
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Homayoun Valafar
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Heather Dunn
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
3
|
Togni A, Piermartiri T, Tasca CI, Nedel CB. The intricate relationship between SUMOylation and gliomas: a review with a perspective on natural compounds. Nat Prod Res 2025:1-12. [PMID: 39849680 DOI: 10.1080/14786419.2025.2456093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Gliomas are tumours that affect the nervous system, with glioblastoma, also known as grade IV astrocytoma, being the most aggressive type, associated with poor prognosis. Glioblastoma is characterised by its highly invasive nature, rapid growth, and resistance to conventional chemotherapy and radiation treatments, resulting in a median survival of about 14 months. To improve patient outcomes, novel therapeutic approaches are needed. Targeting SUMOylation, a post-translational modification involving the attachment of Small Ubiquitin-like Modifier (SUMO) proteins to lysine residues in target proteins, is emerging as a promising strategy. SUMOylation regulates various biological processes, including the cell cycle, apoptosis, and senescence. Dysregulation of this pathway has been linked to glioblastoma tumorigenesis, as well as the invasion and proliferation of glioblastoma cells. Therefore, focusing on the SUMOylation pathway offers the potential for developing innovative therapeutic strategies, including the use of natural compounds as adjuvant therapies, to address glioblastoma more effectively.
Collapse
Affiliation(s)
- Anderson Togni
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tetsade Piermartiri
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cláudia Beatriz Nedel
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Ghazal H, El-Absawy ESA, Ead W, Hasan ME. Machine learning-guided differential gene expression analysis identifies a highly-connected seven-gene cluster in triple-negative breast cancer. Biomedicine (Taipei) 2024; 14:15-35. [PMID: 39777114 PMCID: PMC11703398 DOI: 10.37796/2211-8039.1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background One of the most challenging cancers is triple-negative breast cancer, which is subdivided into many molecular subtypes. Due to the high degree of heterogeneity, the role of precision medicine remains challenging. With the use of machine learning (ML)-guided gene selection, the differential gene expression analysis can be optimized, and eventually, the process of precision medicine can see great advancement through biomarker discovery. Purpose Enhancing precision medicine in the oncology field by identification of the most representative differentially-expressed genes to be used as biomarkers or as novel drug targets. Methods By utilizing data from the Gene Expression Omnibus (GEO) repository and The Cancer Genome Atlas (TCGA), we identified the differentially expressed genes using the linear model for microarray analysis (LIMMA) and edgeR algorithms, and applied ML-based feature selection using several algorithms. Results A total of 27 genes were selected by merging features identified with both LIMMA and ML-based feature selection methods. The models with the highest area under the curve (AUC) are CatBoost, Extreme Gradient Boosting (XGBoost), Random Forest, and Multi-Layer Perceptron classifiers. ESR1, FOXA1, GATA3, XBP1, GREB1, AR, and AGR2 were identified as hub genes in a highly interconnected cluster. Conclusion ML-based gene selection shows a great impact on the identification of hub genes. The ML models built can improve precision oncology in diagnosis and prognosis. The identified hub genes can serve as biomarkers and warrant further research for potential drug target development.
Collapse
Affiliation(s)
- Hany Ghazal
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City,
Egypt
| | - El-Sayed A. El-Absawy
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City,
Egypt
| | - Waleed Ead
- Information Systems Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef,
Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City,
Egypt
| |
Collapse
|
5
|
Wang Y, Sun C, Liu M, Xu P, Li Y, Zhang Y, Huang J. Dysregulated gene expression of SUMO machinery components induces the resistance to anti-PD-1 immunotherapy in lung cancer by upregulating the death of peripheral blood lymphocytes. Front Immunol 2024; 15:1424393. [PMID: 39211047 PMCID: PMC11357960 DOI: 10.3389/fimmu.2024.1424393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background The majority of patients with lung cancer exhibit drug resistance after anti-PD-1 immunotherapy, leading to shortened patient survival time. Previous studies have suggested an association between epigenetic abnormalities such as methylation and clinical response to anti-PD-1 immunotherapy, while the role of SUMOylation in resistance to anti-PD-1 antibody immunotherapy is still unclear. Methods Here, the mRNA expression of 15 SUMO machinery components in PBMC from lung cancer patients receiving anti-PD-1 immunotherapy were analyzed using real-time PCR. Base on the percentage change in mRNA levels, the relationship between the expression of SUMO machinery components and outcomes of anti-PD-1 immunotherapy, and the influencing factors of SUMOylation were evaluated. PBMC was treated with different concentrations of 2-D08 (a specific inhibitor of SUMOylation) in vitro, and analyzed the activation and the death rates of lymphocyte subsets by flow cytometry analysis. Results A predictive method, base on the gene expression of three SUMO machinery components (SUMO1, SUMO3 and UBE2I), were developed to distinguish non-responders to PD-1 inhibitors. Furthermore, the number of lymphocytes in peripheral blood significantly reduced in the dysregulated SUMOylation groups (the percentage change >100 or -50 ~ -100 groups). In vitro studies confirmed that lightly low SUMOylation level improved the activation status of T and NK lymphocytes, but extremely low SUMOylation level lead to the increased death rates of lymphocytes. Conclusion Our findings implied that dysregulated gene expression of SUMO machinery components could induce the resistance of anti-PD-1 immunotherapy in lung cancer by upregulating the death of peripheral blood lymphocytes. These data might provide effective circulating biomarkers for predicting the efficacy of anti-PD-1 immunotherapy, and uncovered a novel regulatory mechanism of resistance to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Chao Sun
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Mengmeng Liu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Panyang Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yanyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yongsheng Zhang
- Prenatal Diagnosis Center, Reproductive Medicine Center, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
De Silva ARI, Page RC. Ubiquitination detection techniques. Exp Biol Med (Maywood) 2023; 248:1333-1346. [PMID: 37787047 PMCID: PMC10625345 DOI: 10.1177/15353702231191186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Ubiquitination is an intricately regulated post-translational modification that involves the covalent attachment of ubiquitin to a substrate protein. The complex dynamic nature of the ubiquitination process regulates diverse cellular functions including targeting proteins for degradation, cell cycle, deoxyribonucleic acid (DNA) damage repair, and numerous cell signaling pathways. Ubiquitination also serves as a crucial mechanism in protein quality control. Dysregulation in ubiquitination could result in lethal disease conditions such as cancers and neurodegenerative diseases. Therefore, the ubiquitination cascade has become an attractive target for therapeutic interventions. Enormous efforts have been made to detect ubiquitination involving different detection techniques to better grasp the underlying molecular mechanisms of ubiquitination. This review discusses a wide range of techniques stretching from the simplest assays to real-time assays. This includes western blotting/immunoblotting, fluorescence assays, chemiluminescence assays, spectrophotometric assays, and nanopore sensing assays. This review compares these applications, and the inherent advantages and limitations.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
7
|
Shao W, Sun K, Ma T, Jiang H, Hahn M, Ma Z, Jiao C, Yin Y. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 238:817-834. [PMID: 36651012 DOI: 10.1111/nph.18748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
SUMOylation as one of the protein post-translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms. Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low-temperature adaptation are largely unknown in fungi. Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in B. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO-interacting motif (SIM). SUMOylated BcSsb regulates β-tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono-ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection. Our study uncovers the molecular mechanisms of SUMOylation-mediated low-temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low-temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.
Collapse
Affiliation(s)
- Wenyong Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Huixian Jiang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chen Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
8
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
9
|
EAPB0503, an Imidazoquinoxaline Derivative Modulates SENP3/ARF Mediated SUMOylation, and Induces NPM1c Degradation in NPM1 Mutant AML. Int J Mol Sci 2022; 23:ijms23073421. [PMID: 35408798 PMCID: PMC8998649 DOI: 10.3390/ijms23073421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin-1 (NPM1) is a pleiotropic protein involved in numerous cellular processes. NPM1 shuttles between the nucleus and the cytoplasm, but exhibits a predominant nucleolar localization, where its fate and functions are exquisitely controlled by dynamic post-translational modifications (PTM). Sentrin/SUMO Specific Peptidase 3 (SENP3) and ARF are two nucleolar proteins involved in NPM1 PTMs. SENP3 antagonizes ARF-mediated NPM1 SUMOylation, to promote ribosomal biogenesis. In Acute Myeloid Leukemia (AML), NPM1 is frequently mutated, and exhibits an aberrant cytoplasmic localization (NPM1c). NPM1c mutations define a separate AML entity with good prognosis in some AML patients, rendering NPM1c as a potential therapeutic target. SENP3-mediated NPM1 de-SUMOylation induces resistance to therapy in NPM1c AML. Here, we demonstrate that the imidazoquinoxaline EAPB0503 prolongs the survival and results in selective reduction in the leukemia burden of NPM1c AML xenograft mice. Indeed, EAPB0503 selectively downregulates HDM2 expression and activates the p53 pathway in NPM1c expressing cells, resulting in apoptosis. Importantly, we unraveled that NPM1c expressing cells exhibit low basal levels of SUMOylation paralleled with high SENP3 and low ARF basal levels. EAPB0503 reverted these molecular players by inducing NPM1c SUMOylation and ubiquitylation, leading to its proteasomal degradation. EAPB0503-induced NPM1c SUMOylation is concurrent with SENP3 downregulation and ARF upregulation in NPM1c expressing cells. Collectively, these results provide a strong rationale for testing therapies modulating NPM1c post-translational modifications in the management of NPM1c AML.
Collapse
|
10
|
Rauth S, Karmakar S, Shah A, Seshacharyulu P, Nimmakayala RK, Ganguly K, Bhatia R, Muniyan S, Kumar S, Dutta S, Lin C, Datta K, Batra SK, Ponnusamy MP. SUMO Modification of PAF1/PD2 Enables PML Interaction and Promotes Radiation Resistance in Pancreatic Ductal Adenocarcinoma. Mol Cell Biol 2021; 41:e0013521. [PMID: 34570619 PMCID: PMC8608017 DOI: 10.1128/mcb.00135-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 09/21/2021] [Indexed: 01/21/2023] Open
Abstract
RNA polymerase II-associated factor 1 (PAF1)/pancreatic differentiation 2 (PD2) is a core subunit of the human PAF1 complex (PAF1C) that regulates the RNA polymerase II function during transcriptional elongation. PAF1/PD2 has also been linked to the oncogenesis of pancreatic ductal adenocarcinoma (PDAC). Here, we report that PAF1/PD2 undergoes posttranslational modification (PTM) through SUMOylation, enhancing the radiation resistance of PDAC cells. We identified that PAF1/PD2 is preferentially modified by small ubiquitin-related modifier 1 (SUMO 1), and mutating the residues (K)-150 and 154 by site-directed mutagenesis reduces the SUMOylation. Interestingly, PAF1/PD2 was found to directly interact with the promyelocytic leukemia (PML) protein in response to radiation, and inhibition of PAF1/PD2 SUMOylation at K-150/154 affects its interaction with PML. Our results demonstrate that SUMOylation of PAF1/PD2 increased in the radiated pancreatic cancer cells. Furthermore, inhibition of SUMOylation or PML reduces the cell growth and proliferation of PDAC cells after radiation treatment. These results suggest that SUMOylation of PAF1/PD2 interacts with PTM for PDAC cell survival. Furthermore, abolishing the SUMOylation in PDAC cells enhances the effectiveness of radiotherapy. Overall, our results demonstrate a novel PTM and PAF1/PD2 interaction through SUMOylation, and inhibiting the SUMOylation of PAF1/PD2 enhance the therapeutic efficacy for PDAC.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chi Lin
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
11
|
Wang L, Qian J, Yang Y, Gu C. Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review). Int J Oncol 2021; 59:73. [PMID: 34368858 PMCID: PMC8360622 DOI: 10.3892/ijo.2021.5253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) system serves an important role in the regulation of protein stability and function. SUMOylation sustains the homeostatic equilibrium of protein function in normal tissues and numerous types of tumor. Accumulating evidence has revealed that SUMO enzymes participate in carcinogenesis via a series of complex cellular or extracellular processes. The present review outlines the physiological characteristics of the SUMOylation pathway and provides examples of SUMOylation participation in different cancer types, including in hematological malignancies (leukemia, lymphoma and myeloma). It has been indicated that the SUMO pathway may influence chromosomal instability, cell cycle progression, apoptosis and chemical drug resistance. The present review also discussed the possible relationship between SUMOylation and carcinogenic mechanisms, and evaluated their potential as biomarkers and therapeutic targets in the diagnosis and treatment of hematological malignancies. Developing and investigating inhibitors of SUMO conjugation in the future may offer promising potential as novel therapeutic strategies.
Collapse
Affiliation(s)
- Ling Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Jinjun Qian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| |
Collapse
|