1
|
Kashiwagi R, Funayama R, Aoki S, Matsui A, Klein S, Sato Y, Suzuki T, Murakami K, Inoue K, Iseki M, Masuda K, Mizuma M, Naito H, Duda DG, Unno M, Nakayama K. Collagen XVII regulates tumor growth in pancreatic cancer through interaction with the tumor microenvironment. Cancer Sci 2023; 114:4286-4298. [PMID: 37688308 PMCID: PMC10637054 DOI: 10.1111/cas.15952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Expression of the gene for collagen XVII (COL17A1) in tumor tissue is positively or negatively associated with patient survival depending on cancer type. High COL17A1 expression is thus a favorable prognostic marker for breast cancer but unfavorable for pancreatic cancer. This study explored the effects of COL17A1 expression on pancreatic tumor growth and their underlying mechanisms. Analysis of published single-cell RNA-sequencing data for human pancreatic cancer tissue revealed that COL17A1 was expressed predominantly in cancer cells rather than surrounding stromal cells. Forced expression of COL17A1 did not substantially affect the proliferation rate of the mouse pancreatic cancer cell lines KPC and AK4.4 in vitro. However, in mouse homograft tumor models in which KPC or AK4.4 cells were injected into syngeneic C57BL/6 or FVB mice, respectively, COL17A1 expression promoted or suppressed tumor growth, respectively, suggesting that the effect of COL17A1 on tumor growth was influenced by the tumor microenvironment. RNA-sequencing analysis of tumor tissue revealed effects of COL17A1 on gene expression profiles (including the expression of genes related to cell proliferation, the immune response, Wnt signaling, and Hippo signaling) that differed between C57BL/6-KPC and FVB-AK4.4 tumors. Our data thus suggest that COL17A1 promotes or suppresses cancer progression in a manner dependent on the interaction of tumor cells with the tumor microenvironment.
Collapse
Affiliation(s)
- Ryosuke Kashiwagi
- Department of Cell ProliferationART, Graduate School of Medicine, Tohoku UniversitySendaiJapan
- Department of SurgeryGraduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Ryo Funayama
- Department of Cell ProliferationART, Graduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Shuichi Aoki
- Department of SurgeryGraduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Aya Matsui
- Department of Vascular Physiology, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Sebastian Klein
- PathologyUniversity Hospital CologneCologneGermany
- Radiation Oncology/Steele Laboratories for Tumor BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Yukihiro Sato
- Department of Cell ProliferationART, Graduate School of Medicine, Tohoku UniversitySendaiJapan
- Department of SurgeryGraduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Tsubasa Suzuki
- Department of Cell ProliferationART, Graduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Keigo Murakami
- Department of Investigative Pathology, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Koetsu Inoue
- Department of SurgeryGraduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Masahiro Iseki
- Department of SurgeryGraduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Kunihiro Masuda
- Department of SurgerySouth Miyagi Medical CenterShibata‐gunJapan
| | - Masamichi Mizuma
- Department of SurgeryGraduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Hisamichi Naito
- Department of Vascular Physiology, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Dan G. Duda
- Radiation Oncology/Steele Laboratories for Tumor BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Michiaki Unno
- Department of SurgeryGraduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Keiko Nakayama
- Department of Cell ProliferationART, Graduate School of Medicine, Tohoku UniversitySendaiJapan
| |
Collapse
|
2
|
Li L, Yang W, Jia D, Zheng S, Gao Y, Wang G. Establishment of a N1-methyladenosine-related risk signature for breast carcinoma by bioinformatics analysis and experimental validation. Breast Cancer 2023:10.1007/s12282-023-01458-1. [PMID: 37178414 DOI: 10.1007/s12282-023-01458-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES Breast carcinoma (BRCA) has resulted in a huge health burden globally. N1-methyladenosine (m1A) RNA methylation has been proven to play key roles in tumorigenesis. Nevertheless, the function of m1A RNA methylation-related genes in BRCA is indistinct. METHODS The RNA sequencing (RNA-seq), copy-number variation (CNV), single-nucleotide variant (SNV), and clinical data of BRCA were acquired via The Cancer Genome Atlas (TCGA) database. In addition, the GSE20685 dataset, the external validation set, was acquired from the Gene Expression Omnibus (GEO) database. 10 m1A RNA methylation regulators were obtained from the previous literature, and further analyzed through differential expression analysis by rank-sum test, mutation by SNV data, and mutual correlation by Pearson Correlation Analysis. Furthermore, the differentially expressed m1A-related genes were selected through overlapping m1A-related module genes obtained by weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs) in BRCA and DEGs between high- and low- m1A score subgroups. The m1A-related model genes in the risk signature were derived by univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. In addition, a nomogram was built through univariate and multivariate Cox analyses. After that, the immune infiltration between the high- and low-risk groups was investigated through ESTIMATE and CIBERSORT. Finally, the expression trends of model genes in clinical BRCA samples were further confirmed by quantitative real-time PCR (RT‒qPCR). RESULTS Eighty-five differentially expressed m1A-related genes were obtained. Among them, six genes were selected as prognostic biomarkers to build the risk model. The validation results of the risk model showed that its prediction was reliable. In addition, Cox independent prognosis analysis revealed that age, risk score, and stage were independent prognostic factors for BRCA. Moreover, 13 types of immune cells were different between the high- and low-risk groups and the immune checkpoint molecules TIGIT, IDO1, LAG3, ICOS, PDCD1LG2, PDCD1, CD27, and CD274 were significantly different between the two risk groups. Ultimately, RT-qPCR results confirmed that the model genes MEOX1, COL17A1, FREM1, TNN, and SLIT3 were significantly up-regulated in BRCA tissues versus normal tissues. CONCLUSIONS An m1A RNA methylation regulator-related prognostic model was constructed, and a nomogram based on the prognostic model was constructed to provide a theoretical reference for individual counseling and clinical preventive intervention in BRCA.
Collapse
Affiliation(s)
- Leilei Li
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Wenhui Yang
- Department of Digestive Oncology, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People's Republic of China
| | - Daqi Jia
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Shiqi Zheng
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yuzhe Gao
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China.
| | - Guanghui Wang
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China.
| |
Collapse
|
3
|
Miličić I, Mikuš M, Vrbanić A, Kalafatić D. The Role of Gene Expression in Stress Urinary Incontinence: An Integrative Review of Evidence. Medicina (B Aires) 2023; 59:medicina59040700. [PMID: 37109658 PMCID: PMC10142382 DOI: 10.3390/medicina59040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Stress urinary incontinence (SUI) is defined as unintentional urine leakage occurring as a consequence of increased intraabdominal pressure due to absent or weak musculus detrusor contractility. It affects postmenopausal women more often than premenopausal and is associated with quality of life (QoL) deterioration. The complex SUI etiology is generally perceived as multifactorial; however, the overall impact of environmental and genetic influences is deficiently understood. In this research report, we have disclosed the upregulation of 15 genes and the downregulation of 2 genes in the genetic etiology of SUI according to the accessible scientific literature. The analytical methods used for the analysis of gene expression in the studies investigated were immunohistochemistry, immunofluorescence staining, PCR, and Western blot. In order to facilitate the interpretation of the results, we have used GeneMania, a potent software which describes genetic expression, co-expression, co-localization, and protein domain similarity. The importance of this review on the genetic pathophysiology of SUI lies in determining susceptibility for targeted genetic therapy, detecting clinical biomarkers, and other possible therapeutic advances. The prevention of SUI with the timely recognition of genetic factors may be important for avoiding invasive operative urogynecological methods.
Collapse
Affiliation(s)
- Iva Miličić
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
| | - Mislav Mikuš
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
| | - Adam Vrbanić
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
| | - Držislav Kalafatić
- Department of Gynecology and Obstetrics, University Hospital Centre, 10 000 Zagreb, Croatia
- Medical School, University of Zagreb, 10 000 Zagreb, Croatia
| |
Collapse
|
4
|
Xu Y, Mu J, Zhou Z, Leng Y, Yu Y, Song X, Liu A, Zhu H, Li J, Wang D. Expansion of mouse castration-resistant intermediate prostate stem cells in vitro. Stem Cell Res Ther 2022; 13:299. [PMID: 35841025 PMCID: PMC9284701 DOI: 10.1186/s13287-022-02978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Most castration-resistant prostate cancers (CRPCs) have a luminal phenotype with high androgen receptor (AR) and prostate-specific antigen (PSA) expression. Currently, it is difficult to culture castration-resistant luminal cells with AR and PSA expression. Methods We formulated a custom-made medium and isolated primary cells from the prostate of adult wild-type (WT) and TRAMP mice. The cells were characterized by immunofluorescence staining, transcriptomic analysis, and qRT-PCR verification. Their self-renewal and differentiation potential in vitro and in vivo were examined. We treated the cells with androgen deprivation and enzalutamide and performed immunofluorescence staining and western blotting to analyze their expression of AR and PSA. Results We isolated a novel type of castration-resistant intermediate prostate stem cells (CRIPSCs) from adult WT and TRAMP mice. The mouse CRIPSCs proliferated rapidly in two-dimensional (2D) culture dishes and can be cultured for more than six months. The mouse CRIPSCs expressed luminal markers (AR, PSA, and Dsg4), basal markers (CK5 and p63), Psca, and the intermediate cell marker (Ivl). Transcriptomic analysis showed that the mouse CRIPSCs had upregulated signaling pathways related to cancer development and drug resistance. In the long-term culture, TRAMP CRIPSCs had higher expression of the genes related to stem cells and cancers than WT mice. Both WT and TRAMP CRIPSCs formed organoids in Matrigel. WT CRIPSCs did not form prostate tissues when transplanted in vivo without urogenital sinus mesenchyme (UGM) cells. In contrast, TRAMP CRIPSCs formed prostate ducts in NOG mice without UGM cells and differentiated into luminal, basal, and neuroendocrine cells. Androgens regulated AR translocation between the nucleus and cytoplasm in the mouse CRIPSCs. Treatment of androgen deprivation (ADT) and enzalutamide reduced AR expression in WT and TRAMP CRIPSCs; however, this treatment promoted PSA expression in TRAMP, while not WT CRIPSCs, similar to the clinical observations of CRPC. Conclusions Our study established a method for isolating and expanding mouse CRIPSCs in 2D culture dishes. Mouse CRIPSCs had markers of basal and luminal cells, including AR and PSA, and can differentiate into prostate organoids and tissues. TRAMP CRIPSCs had elevated PSA expression upon ADT and enzalutamide treatment. Our method can be translated into clinical settings for CRPC precision medicine.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.,School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Jie Mu
- College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.,School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.,School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.,School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Aihua Liu
- College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, 266011, China.
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
5
|
Huang WL, Wu SF, Huang X, Zhou S. Integrated Analysis of ECT2 and COL17A1 as Potential Biomarkers for Pancreatic Cancer. DISEASE MARKERS 2022; 2022:9453549. [PMID: 35722628 PMCID: PMC9200569 DOI: 10.1155/2022/9453549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Background Pancreatic cancer (PC) is a malignant tumor of the digestive tract. It presents with atypical clinical symptoms and lacks specific diagnostic indicators. This study is aimed at exploring the potential biomarkers of PC. Methods TCGA database pancreatic cancer dataset was normalized and used to identify differentially expressed genes (DEGs). Survival, independent prognostic, and clinical correlation analyses were performed on DEGs to screen for key genes. DNA methylation, mutation, and copy number variation (CNV) analyses were used to analyze genetic variants in key genes. GSEA was performed to explore the functional enrichment of the key genes. Based on the expression of key genes, construction of a competing endogenous RNA (ceRNA) network, analysis of the tumor microenvironment (TME), and prediction of chemotherapeutic drug sensitivity were performed. Furthermore, the GEO database was used to validate the reliability of key genes. Results Two key genes (ECT2 and COL17A1) were identified, which were highly expressed in PC. The mRNA expression of ECT2 and COL17A1 was associated with DNA methylation and CNV. The cell cycle, proteasome, and pathways in cancer were enriched in the high-COL17A1 and ECT2 groups. The TME results showed that immune scores were decreased in the high-ECT2 group. CeRNA network results showed that there were eleven miRNAs were involved in the regulation of ECT2 and COL17A1. Moreover, pRRophetic analysis showed that 20 chemotherapeutic drugs were associated with ECT2 and COL17A1 expression. Conclusions Collectively, ECT2 and COL17A1 may be potential biomarkers for PC, providing a new direction for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Wen-liang Huang
- MRI Room, The Second Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Shu-fen Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Xiao Huang
- Department of Clinical Laboratory, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Shan Zhou
- MRI Room, The Second Affiliated Hospital of Luohe Medical College, Luohe, China
| |
Collapse
|