1
|
Danieli MG, Brunetto S, Gammeri L, Palmeri D, Claudi I, Shoenfeld Y, Gangemi S. Machine learning application in autoimmune diseases: State of art and future prospectives. Autoimmun Rev 2024; 23:103496. [PMID: 38081493 DOI: 10.1016/j.autrev.2023.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024]
Abstract
Autoimmune diseases are a group of disorders resulting from an alteration of immune tolerance, characterized by the formation of autoantibodies and the consequent development of heterogeneous clinical manifestations. Diagnosing autoimmune diseases is often complicated, and the available prognostic tools are limited. Machine learning allows us to analyze large amounts of data and carry out complex calculations quickly and with minimal effort. In this work, we examine the literature focusing on the use of machine learning in the field of the main systemic (systemic lupus erythematosus and rheumatoid arthritis) and organ-specific autoimmune diseases (type 1 diabetes mellitus, autoimmune thyroid, gastrointestinal, and skin diseases). From our analysis, interesting applications of machine learning emerged for developing algorithms useful in the early diagnosis of disease or prognostic models (risk of complications, therapeutic response). Subsequent studies and the creation of increasingly rich databases to be supplied to the algorithms will eventually guide the clinician in the diagnosis, allowing intervention when the pathology is still in an early stage and immediately directing towards a correct therapeutic approach.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- SOS Immunologia delle Malattie Rare e dei Trapianti. AOU delle Marche & Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Silvia Brunetto
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Luca Gammeri
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Ilaria Claudi
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, and Reichman University Herzliya, Israel.
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
2
|
Munguía-Realpozo P, Etchegaray-Morales I, Mendoza-Pinto C, Méndez-Martínez S, Osorio-Peña ÁD, Ayón-Aguilar J, García-Carrasco M. Current state and completeness of reporting clinical prediction models using machine learning in systemic lupus erythematosus: A systematic review. Autoimmun Rev 2023; 22:103294. [PMID: 36791873 DOI: 10.1016/j.autrev.2023.103294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE We carried out a systematic review (SR) of adherence in diagnostic and prognostic applications of ML in SLE using the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. METHODS A SR employing five databases was conducted from its inception until December 2021. We identified articles that evaluated the utilization of ML for prognostic and/or diagnostic purposes. This SR was reported based on the PRISMA guidelines. The TRIPOD statement assessed adherence to reporting standards. Assessment for risk of bias was done using PROBAST tool. RESULTS We included 45 studies: 29 (64.4%) diagnostic and 16 (35.5%) prognostic prediction- model studies. Overall, articles adhered by between 17% and 67% (median 43%, IQR 37-49%) to TRIPOD items. Only few articles reported the model's predictive performance (2.3%, 95% CI 0.06-12.0), testing of interaction terms (2.3%, 95% CI 0.06-12.0), flow of participants (50%, 95% CI; 34.6-65.4), blinding of predictors (2.3%, 95% CI 0.06-12.0), handling of missing data (36.4%, 95% CI 22.4-52.2), and appropriate title (20.5%, 95% CI 9.8-35.3). Some items were almost completely reported: the source of data (88.6%, 95% CI 75.4-96.2), eligibility criteria (86.4%, 95% CI 76.2-96.5), and interpretation of findings (88.6%, 95% CI 75.4-96.2). In addition, most of model studies had high risk of bias. CONCLUSIONS The reporting adherence of ML-based model developed for SLE, is currently inadequate. Several items deemed crucial for transparent reporting were not fully reported in studies on ML-based prediction models. REVIEW REGISTRATION PROSPERO ID# CRD42021284881. (Amended to limit the scope).
Collapse
Affiliation(s)
- Pamela Munguía-Realpozo
- Systemic Autoimmune Diseases Research Unit, Specialties Hospital UMAE- CIBIOR, Mexican Institute for Social Security, Puebla, Mexico; Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, Mexico
| | - Ivet Etchegaray-Morales
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, Mexico.
| | - Claudia Mendoza-Pinto
- Systemic Autoimmune Diseases Research Unit, Specialties Hospital UMAE- CIBIOR, Mexican Institute for Social Security, Puebla, Mexico; Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, Mexico.
| | | | - Ángel David Osorio-Peña
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, Mexico
| | - Jorge Ayón-Aguilar
- Coordination of Health Research, Mexican Social Security Institute, Puebla, Mexico.
| | - Mario García-Carrasco
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, Mexico
| |
Collapse
|
3
|
Fang W, Zhuo W, Song Y, Yan J, Zhou T, Qin J. Δfree-LSTM: An error distribution free deep learning for short-term traffic flow forecasting. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Qiu J, Tan G, Lin Y, Guan J, Dai Z, Wang F, Zhuang C, Wilman AH, Huang H, Cao Z, Tang Y, Jia Y, Li Y, Zhou T, Wu R. Automated detection of intracranial artery stenosis and occlusion in magnetic resonance angiography: A preliminary study based on deep learning. Magn Reson Imaging 2022; 94:105-111. [PMID: 36174873 DOI: 10.1016/j.mri.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Intracranial atherosclerotic stenosis of a major intracranial artery is the common cause of ischemic stroke. We evaluate the feasibility of using deep learning to automatically detect intracranial arterial steno-occlusive lesions from time-of-flight magnetic resonance angiography. METHODS In a retrospective study, magnetic resonance images with radiological reports of intracranial arterial stenosis and occlusion were extracted. The images were randomly divided into a training set and a test set. The manual annotation of lesions with a bounding box labeled "moderate stenosis," "severe stenosis," "occlusion," and "absence of signal" was considered as ground truth. A deep learning algorithm based on you only look once version 5 (YOLOv5) detection model was developed with the training set, and its sensitivity and positive predictive values to detect lesions were evaluated in the test set. RESULTS A dataset of 200 examinations consisted of a total of 411 lesions-242 moderate stenoses, 84 severe stenoses, 70 occlusions, and 15 absence of signal. The magnetic resonance images contained 291 lesions in the training set and 120 lesions in the test set. The sensitivity and positive predictive values were 64.2 and 83.7%, respectively. The detection sensitivity in relation to the location was greatest in the internal carotid artery (86.2%). CONCLUSIONS Applying deep learning algorithms in the automated detection of intracranial arterial steno-occlusive lesions from time-of-flight magnetic resonance angiography is feasible and has great potential.
Collapse
Affiliation(s)
- Jinming Qiu
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Radiology, the Sixth Affiliated Hospital, South China University of Technology, Foshan 528000, Guangdong, PR China
| | - Guanru Tan
- Department of Computer Science, Shantou University, Shantou 515041, Guangdong, PR China
| | - Yan Lin
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jitian Guan
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Zhuozhi Dai
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Fei Wang
- Department of Computer Science, Shantou University, Shantou 515041, Guangdong, PR China
| | - Caiyu Zhuang
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Huaidong Huang
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Zhen Cao
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yanyan Tang
- Department of Medical Imaging, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong, PR China
| | - Yanlong Jia
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yan Li
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515800, China
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| |
Collapse
|
5
|
Zhou Y, Wang M, Zhao S, Yan Y. Machine Learning for Diagnosis of Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7167066. [PMID: 36458233 PMCID: PMC9708354 DOI: 10.1155/2022/7167066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 08/15/2023]
Abstract
Background Application of machine learning (ML) for identification of systemic lupus erythematosus (SLE) has been recently drawing increasing attention, while there is still lack of evidence-based support. Methods Systematic review and meta-analysis are conducted to evaluate its diagnostic accuracy and application prospect. PubMed, Embase, Cochrane Library, and Web of Science libraries are searched, in combination with manual searching and literature retrospection, for studies regarding machine learning for identifying SLE and neuropsychiatric systemic lupus erythematosus (NPSLE). Quality Assessment of Diagnostic Accuracy Studies (QUADA-2) is applied to assess the quality of included studies. Diagnostic accuracy of the SLE model and NPSLE model is assessed using the bivariate fixed-effect model, and the data are pooled. Summary receiver operator characteristic curve (SROC) is plotted, and area under the curve (AUC) is calculated. Results Eighteen (18) studies are included, in which ten (10) focused on SLE and eight (8) on NPSLE. The AUC of SLE identification is 0.95, the sensitivity is 0.90, the specificity is 0.89, the PLR is 8.4, the NLR is 0.12, and the DOR is 73. AUC of NPSLE identification is 0.89, the sensitivity is 0.83, the specificity is 0.83, the PLR is 5.0, the NLR is 0.20, and the DOR is 25. Conclusion Machine learning presented remarkable performance in identification of SLE and NPSLE. Based on the convenience for inclusion factor collection and non-invasiveness of detection, machine learning is expected to be widely applied in clinical practice to assist medical decision making.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Wang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shasha Zhao
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Yang S, Li H, Lin Z, Song Y, Lin C, Zhou T. Quantitative Analysis of Anesthesia Recovery Time by Machine Learning Prediction Models. MATHEMATICS 2022; 10:2772. [DOI: 10.3390/math10152772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is significant for anesthesiologists to have a precise grasp of the recovery time of the patient after anesthesia. Accurate prediction of anesthesia recovery time can support anesthesiologist decision-making during surgery to help reduce the risk of surgery in patients. However, effective models are not proposed to solve this problem for anesthesiologists. In this paper, we seek to find effective forecasting methods. First, we collect 1824 patient anesthesia data from the eye center and then performed data preprocessing. We extracted 85 variables to predict recovery time from anesthesia. Second, we extract anesthesia information between variables for prediction using machine learning methods, including Bayesian ridge, lightGBM, random forest, support vector regression, and extreme gradient boosting. We also design simple deep learning models as prediction models, including linear residual neural networks and jumping knowledge linear neural networks. Lastly, we perform a comparative experiment of the above methods on the dataset. The experiment demonstrates that the machine learning method performs better than the deep learning model mentioned above on a small number of samples. We find random forest and XGBoost are more efficient than other methods to extract information between variables on postoperative anesthesia recovery time.
Collapse
Affiliation(s)
- Shumin Yang
- Department of Computer Science, Shantou University, Shantou 515041, China
| | | | | | | | | | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
- Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515800, China
| |
Collapse
|
7
|
Yuan Y, Quan T, Song Y, Guan J, Zhou T, Wu R. Noise-immune Extreme Ensemble Learning for Early Diagnosis of Neuropsychiatric Systemic Lupus Erythematosus. IEEE J Biomed Health Inform 2022; 26:3495-3506. [PMID: 35380977 DOI: 10.1109/jbhi.2022.3164937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Early diagnosis is currently the most effective way of saving the life of patients with neuropsychiatric systemic lupus erythematosus (NPSLE). However, it is rather difficult to detect this terrible disease at the early stage, due to the subtle and elusive symptomatic signals. Recent studies show that the 1H-MRS (proton magnetic resonance spectroscopy) imaging technique can capture more information reflecting the early appearance of this disease than conventional magnetic resonance imaging techniques. 1H-MRS data, however, also presents more noises that can bring serious diagnosis bias. We hence proposed a noise-immune extreme ensemble learning technique for effectively leveraging 1H-MRS data for advancing the early diagnosis of NPSLE. Our main results are that 1) by developing generalized maximum correntropy criterion in the kernel extreme learning setting, many types of non-Gaussian noises can be distinguished, and 2) weighted recursive feature elimination, using maximal information coefficient to weight feature's importance, helps to further alleviate the bad impact of noises on the diagnosis performance. The proposed method is assessed on a publicly available dataset with 97.5% accuracy, 95.8% sensitivity, and 99.9% specificity, which well demonstrates its efficacy.
Collapse
|