1
|
Li C, Huang H, Wang R, Zhang C, Huang S, Wu J, Mo P, Yu H, Li S, Chen J. Jian-Pi-Yi-Shen formula restores iron metabolism from dysregulation in anemic rats with adenine-induced nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116526. [PMID: 37088234 DOI: 10.1016/j.jep.2023.116526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jian-Pi-Yi-Shen (JPYS) is a herbal decoction being used to relieve the symptoms of chronic kidney disease (CKD) and its complications, including anemia, for over twenty years. Nonetheless, it is unclear how JPYS influences renal anemia and iron metabolism. AIM OF THE STUDY An analysis of network pharmacology, chemical profiling, and in vivo experiments was conducted to identify the impact of JPYS on JAK2-STAT3 pathway and iron utilization in renal anemia and CKD. MATERIALS AND METHODS The chemical properties of JPYS and its exposed ingredients were detected in vivo. And based on the aforesaid chemical compounds, the potential targets and signaling pathways of JPYS for renal anemia treatment were predicted by network pharmacology. Afterward, an adenine-feeding animal model of CKD-related anemia was developed to verify the mechanism by which JPYS modulates iron recycling to treat renal anemia. Renal injury was estimated by serum creatinine (Scr), blood urea nitrogen (BUN), histopathological examinations and fibrosis degree. Western blot, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry approaches were utilized to assess the levels of JAK2, STAT3 and iron metabolism-related factors. RESULTS There were 164 active ingredients identified in JPYS, including prototypes and metabolites in vivo were identified in JPYS, and 21 core targets were found through network pharmacology based on topological characteristics. Combined with the core targets and pathway enrichment analysis, the majority of the candidate targets were associated with the JAK2-STAT3 signaling pathways. Experimental results indicated that JPYS treatment significantly decreased the expression of BUN and Scr, restored renal pathological damage, down-regulated fibrosis degree, and improved hematological parameters such as red blood cell, hemoglobin and hematocrit in CKD rats. Furthermore, JPYS significantly restored iron metabolism from dysregulation by increasing the levels of iron and ferritin in the serum, inhibiting the production of hepcidin in liver and serum, and regulating transferrin receptor 1 in bone marrow. Meanwhile, the expression of JAK2 and STAT3 was suppressed by JPYS treatment. CONCLUSIONS Based on these results, JPYS reduces hepcidin levels by inhibiting the activation of JAK2-STAT3 signaling, thereby protecting against iron deficiency anemia.
Collapse
Affiliation(s)
- Changhui Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Haipiao Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Rui Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Chi Zhang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jinru Wu
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Pingli Mo
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Huimin Yu
- School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Shunmin Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
2
|
A Chinese Medicine Compound Alleviates Cisplatin-Induced Acute Kidney Injury via Its Antiapoptosis and Anti-Inflammation Effects in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7841284. [PMID: 35815260 PMCID: PMC9259212 DOI: 10.1155/2022/7841284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Cisplatin, also known as cis-diamine dichloroplatinum (CDDP), is a widely used chemotherapeutic drug. However, its application is limited by the occurrence of serious nephrotoxicity. Currently, no effective therapy is available for combating CDDP-induced acute kidney injury (AKI). In the present study, we investigated the efficacy of Jianpi Yishen Tang (JPYST), a traditional Chinese medicine (TCM) compound commonly used to treat chronic kidney disease, against CDDP-induced AKI. In the CDDP + JPYST group, male mice were pretreated with JPYST (18.35 g/kg/day) for 5 consecutive days before receiving a single dose of CDDP (20 mg/kg), all mice were sacrificed 72 h after the CDDP injection. Results showed that JPYST suppressed CDDP-induced kidney dysfunction and tubular damage scores in the mice. Mechanistically, JPYST treatment attenuated CDDP-induced renal tubular cell apoptosis in AKI mice, as manifested by a marked decreased in TUNEL-positive cell counts, downregulation of the pro-apoptotic proteins Bax, Bad and caspase 3, and upregulation of the antiapoptotic protein Bcl-2 in kidney tissues. Meanwhile, JPYST decreased the expression of inflammatory cytokines TNF-α, IL-1β, and IL-6 in the serum and renal tissues of mice following CDDP administration. These factors are involved in suppressing the activation of phospho-NF-κB p65 in tubular epithelial cells. Taken together, these findings demonstrated that JPYST exerts renoprotective effects against CDDP-induced AKI through antiapoptosis and anti-inflammation effects, and these are associated with downregulation of NF-κB activation. Therefore, JPYST has potential for development of treatment therapies against CDDP-induced AKI.
Collapse
|
4
|
Vasiliev G, Chadaeva I, Rasskazov D, Ponomarenko P, Sharypova E, Drachkova I, Bogomolov A, Savinkova L, Ponomarenko M, Kolchanov N, Osadchuk A, Oshchepkov D, Osadchuk L. A Bioinformatics Model of Human Diseases on the Basis of Differentially Expressed Genes (of Domestic Versus Wild Animals) That Are Orthologs of Human Genes Associated with Reproductive-Potential Changes. Int J Mol Sci 2021; 22:2346. [PMID: 33652917 PMCID: PMC7956675 DOI: 10.3390/ijms22052346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Earlier, after our bioinformatic analysis of single-nucleotide polymorphisms of TATA-binding protein-binding sites within gene promoters on the human Y chromosome, we suggested that human reproductive potential diminishes during self-domestication. Here, we implemented bioinformatics models of human diseases using animal in vivo genome-wide RNA-Seq data to compare the effect of co-directed changes in the expression of orthologous genes on human reproductive potential and during the divergence of domestic and wild animals from their nearest common ancestor (NCA). For example, serotonin receptor 3A (HTR3A) deficiency contributes to sudden death in pregnancy, consistently with Htr3a underexpression in guinea pigs (Cavia porcellus) during their divergence from their NCA with cavy (C. aperea). Overall, 25 and three differentially expressed genes (hereinafter, DEGs) in domestic animals versus 11 and 17 DEGs in wild animals show the direction consistent with human orthologous gene-markers of reduced and increased reproductive potential. This indicates a reliable association between DEGs in domestic animals and human orthologous genes reducing reproductive potential (Pearson's χ2 test p < 0.001, Fisher's exact test p < 0.05, binomial distribution p < 0.0001), whereas DEGs in wild animals uniformly match human orthologous genes decreasing and increasing human reproductive potential (p > 0.1; binomial distribution), thus enforcing the norm (wild type).
Collapse
Affiliation(s)
- Gennady Vasiliev
- Novosibirsk State University, 630090 Novosibirsk, Russia;
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Alexander Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| |
Collapse
|