1
|
Carter JA, Rivadulla AR, Preatoni E. A support vector machine algorithm can successfully classify running ability when trained with wearable sensor data from anatomical locations typical of consumer technology. Sports Biomech 2024; 23:2372-2389. [PMID: 35045801 DOI: 10.1080/14763141.2022.2027509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Greater understanding of differences in technique between runners may allow more beneficial feedback related to improving performance and decreasing injury risk. The purpose of this study was to develop and test a support vector machine classifier, which could automatically differentiate running technique between experienced and novice participants using only wearable sensor data. Three-dimensional linear accelerations and angular velocities were collected from six wearable sensors secured to current common smart device locations. Cross-validation was used to test the classification accuracy of models trained with a variety of combinations of sensor locations, with participants running at different speeds. Average classification accuracies ranged from 71.3% to 98.4% across the sensor combinations and running speeds tested. Models trained with only a single sensor location still showed effective classification. With the models trained with only upper arm data achieving an average accuracy of 96.4% across all tested running speeds. A post-hoc comparison of biomechanical variables between the two subgroups showed significant differences in upper body biomechanics throughout the stride. Both the methodology used to perform the classifications and the biomechanical differences identified could prove useful when aiming to shift a novice runner's technique towards movement patterns more akin to those with greater experience.
Collapse
|
2
|
Murofushi K, Mitomo S, Hirohata K, Furuya H, Katagiri H, Kaneoka K, Hara S, Yagishita K. Predictive Value of the KOJI AWARENESS Self-Evaluation System for Running Injuries in Elite Male Long-Distance Runners: A Prospective Cohort Study. Orthop J Sports Med 2024; 12:23259671241260517. [PMID: 39143987 PMCID: PMC11322930 DOI: 10.1177/23259671241260517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 08/16/2024] Open
Abstract
Background The KOJI AWARENESS (KA) test is a practical self-evaluation tool that assesses body movements and may help develop individual conditioning plans to improve movement function. However, the association between preseason KA scores and in-season injury occurrence remains unexplored. Purpose To investigate whether the KA self-screening test score can predict running-related injuries in elite long-distance runners. Study Design Cohort study; Level of evidence, 2. Methods A total of 47 elite college male long-distance runners (age, 18-22 years) were enrolled in this study in June 2022. The participants underwent the KA self-screening test to assess preseason upper limb, core, and lower limb function. Running-related injuries with a training time loss of >3 weeks were tracked for 6 months during the season. The participants were divided into injury and noninjury groups, and between-group comparisons and receiver operating characteristic (ROC) curve analysis were used to determine the association between the KA scores and the injury incidence. Chi-square tests and risk ratios were calculated based on the cutoff value- and injury-based grouping. Results Among the runners, 10 (21.3%) sustained an injury. There were no significant differences in the demographic characteristics between the injury and noninjury groups. The injury group had significantly lower KA scores than the noninjury group (median, 44.5 [interquartile range, 43-46.8] vs median, 48 [interquartile range, 46-50], respectively; P = .009). The ROC curve analysis determined a cutoff value of 46.5 points (sensitivity, 73%; specificity, 63.6%), indicating that the KA scores exhibited a relatively high predictive value for running-related injuries (area under the ROC curve, 0.764 [95% CI, 0.600-0.930]). The risk ratio for group division based on the cutoff value was 2.590 (95% CI, 1.329-5.047). Conclusion These findings demonstrated that the KA test is an effective self-screening tool for predicting the risk of running-related injuries in elite male long-distance runners.
Collapse
Affiliation(s)
- Koji Murofushi
- Sports Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Japan Sports Agency, Tokyo, Japan
| | - Sho Mitomo
- Japan Sports Agency, Tokyo, Japan
- Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Hirohata
- Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetaka Furuya
- Department of Rehabilitation, Sonoda Third Hospital/Tokyo Medical Institute Tokyo Spine Center, Tokyo, Japan
| | - Hiroki Katagiri
- Department of Orthopedics, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Koji Kaneoka
- Faculty of Sport Science, Waseda University, Tokyo, Japan
| | - Susumu Hara
- School of Global Studies and Collaboration, Aoyama Gakuin University, Tokyo, Japan
| | - Kazuyoshi Yagishita
- Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Musso M, Oliveira AS, Bai S. Influence of an upper limb exoskeleton on muscle activity during various construction and manufacturing tasks. APPLIED ERGONOMICS 2024; 114:104158. [PMID: 37890312 DOI: 10.1016/j.apergo.2023.104158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Musculoskeletal disorders (MSDs) significantly impact workers in the manufacturing and construction sectors. One solution that has gained interest to reduce MSDs incidence is the use of exoskeletons. In this study, the influence of an upper limb exoskeleton on muscle activity was investigated experimentally for three commonly performed tasks in the manufacturing and construction sectors. The tasks tested were overhead assembly, bricklaying, and box moving tasks. Eighteen males participated in the tests. The results showed a reduction in shoulder flexor muscle activation during all three tasks (up to -45.46 ± 4.52% for the anterior deltoid), but increased extensor activation (up to 15.47 ± 8.01% for the latissimus dorsi) was observed when the task was not primarily performed above shoulder level. The results revealed the dependence of the upper-body exoskeleton on tasks and arm posture, which should be considered for both in-field applications and designing new exoskeletons for performance enhancement.
Collapse
Affiliation(s)
- Matteo Musso
- Department of Material and Production, Aalborg University, Fredrik Bajers Vej 7K, Aalborg, 9220, Denmark.
| | - Anderson Souza Oliveira
- Department of Material and Production, Aalborg University, Fredrik Bajers Vej 7K, Aalborg, 9220, Denmark.
| | - Shaoping Bai
- Department of Material and Production, Aalborg University, Fredrik Bajers Vej 7K, Aalborg, 9220, Denmark.
| |
Collapse
|
4
|
Bongiorno G, Sisti G, Tsiotas G, Biancuzzi H, Dal Mas F, Miceli L. Artificial intelligence as a potential teaching tool for athletes: when the skate and the smartphone run together. J Sports Med Phys Fitness 2023; 63:974-976. [PMID: 37314440 DOI: 10.23736/s0022-4707.23.15186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Giulia Bongiorno
- Friuli Rehabilitation Center, Roveredo in Piano, Pordenone, Italy
| | - Giulio Sisti
- Unit of Pain Medicine, IRCCS CRO Aviano, Aviano, Pordenone, Italy
| | - Giorgio Tsiotas
- Faculty of Computer Science and Engineering, University of Bologna, Bologna, Italy
| | - Helena Biancuzzi
- Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Francesca Dal Mas
- Department of Management, Ca' Foscari University of Venice, Venice, Italy
| | - Luca Miceli
- Unit of Pain Medicine, IRCCS CRO Aviano, Aviano, Pordenone, Italy -
| |
Collapse
|
5
|
Pirscoveanu CI, Oliveira AS. Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running. SENSORS (BASEL, SWITZERLAND) 2023; 23:2928. [PMID: 36991637 PMCID: PMC10053772 DOI: 10.3390/s23062928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Accelerometry is becoming a popular method to access human movement in outdoor conditions. Running smartwatches may acquire chest accelerometry through a chest strap, but little is known about whether the data from these chest straps can provide indirect access to changes in vertical impact properties that define rearfoot or forefoot strike. This study assessed whether the data from a fitness smartwatch and chest strap containing a tri-axial accelerometer (FS) is sensible to detect changes in running style. Twenty-eight participants performed 95 m running bouts at ~3 m/s in two conditions: normal running and running while actively reducing impact sounds (silent running). The FS acquired running cadence, ground contact time (GCT), stride length, trunk vertical oscillation (TVO), and heart rate. Moreover, a tri-axial accelerometer attached to the right shank provided peak vertical tibia acceleration (PKACC). The running parameters extracted from the FS and PKACC variables were compared between normal and silent running. Moreover, the association between PKACC and smartwatch running parameters was accessed using Pearson correlations. There was a 13 ± 19% reduction in PKACC (p < 0.005), and a 5 ± 10% increase in TVO from normal to silent running (p < 0.01). Moreover, there were slight reductions (~2 ± 2%) in cadence and GCT when silently running (p < 0.05). However, there were no significant associations between PKACC and the variables extracted from the FS (r < 0.1, p > 0.05). Therefore, our results suggest that biomechanical variables extracted from FS have limited sensitivity to detect changes in running technique. Moreover, the biomechanical variables from the FS cannot be associated with lower limb vertical loading.
Collapse
|
6
|
Mason R, Pearson LT, Barry G, Young F, Lennon O, Godfrey A, Stuart S. Wearables for Running Gait Analysis: A Systematic Review. Sports Med 2023; 53:241-268. [PMID: 36242762 PMCID: PMC9807497 DOI: 10.1007/s40279-022-01760-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Running gait assessment has traditionally been performed using subjective observation or expensive laboratory-based objective technologies, such as three-dimensional motion capture or force plates. However, recent developments in wearable devices allow for continuous monitoring and analysis of running mechanics in any environment. Objective measurement of running gait is an important (clinical) tool for injury assessment and provides measures that can be used to enhance performance. OBJECTIVES We aimed to systematically review the available literature investigating how wearable technology is being used for running gait analysis in adults. METHODS A systematic search of the literature was conducted in the following scientific databases: PubMed, Scopus, Web of Science and SPORTDiscus. Information was extracted from each included article regarding the type of study, participants, protocol, wearable device(s), main outcomes/measures, analysis and key findings. RESULTS A total of 131 articles were reviewed: 56 investigated the validity of wearable technology, 22 examined the reliability and 77 focused on applied use. Most studies used inertial measurement units (n = 62) [i.e. a combination of accelerometers, gyroscopes and magnetometers in a single unit] or solely accelerometers (n = 40), with one using gyroscopes alone and 31 using pressure sensors. On average, studies used one wearable device to examine running gait. Wearable locations were distributed among the shank, shoe and waist. The mean number of participants was 26 (± 27), with an average age of 28.3 (± 7.0) years. Most studies took place indoors (n = 93), using a treadmill (n = 62), with the main aims seeking to identify running gait outcomes or investigate the effects of injury, fatigue, intrinsic factors (e.g. age, sex, morphology) or footwear on running gait outcomes. Generally, wearables were found to be valid and reliable tools for assessing running gait compared to reference standards. CONCLUSIONS This comprehensive review highlighted that most studies that have examined running gait using wearable sensors have done so with young adult recreational runners, using one inertial measurement unit sensor, with participants running on a treadmill and reporting outcomes of ground contact time, stride length, stride frequency and tibial acceleration. Future studies are required to obtain consensus regarding terminology, protocols for testing validity and the reliability of devices and suitability of gait outcomes. CLINICAL TRIAL REGISTRATION CRD42021235527.
Collapse
Affiliation(s)
- Rachel Mason
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Liam T Pearson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Gillian Barry
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Fraser Young
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | - Alan Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
- Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
7
|
Romero V, Lahti J, Castaño Zambudio A, Mendiguchia J, Jiménez Reyes P, Morin JB. Effects of Fatigue Induced by Repeated Sprints on Sprint Biomechanics in Football Players: Should We Look at the Group or the Individual? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14643. [PMID: 36429363 PMCID: PMC9691012 DOI: 10.3390/ijerph192214643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to analyse the influence of fatigue on sprint biomechanics. Fifty-one football players performed twelve maximal 30 m sprints with 20 s recovery between each sprint. Sprint kinetics were computed from running speed data and a high-frequency camera (240 Hz) was used to study kinematic data. A cluster analysis (K-mean clustering) was conducted to classify individual kinematic adaptations. A large decrease in maximal power output and less efficiency in horizontally orienting the ground reaction force were observed in fatigued participants. In addition, individual changes in kinematic components were observed, and, according to the cluster analysis, five clusters were identified. Changes in trunk, knee, and hip angles led to an overall theoretical increase in hamstring strain for some players (Cluster 5, 20/51) but to an overall decrease for some others (Cluster 1, 11/51). This study showed that the repeated sprint ability (RSA) protocol had an impact on both kinetics and kinematics. Moreover, fatigue affected the kinematics in a different way for each player, and these individual changes were associated with either higher or lower hamstring length and thus strain.
Collapse
Affiliation(s)
- Valentin Romero
- Centre for Sport Studies, Rey Juan Carlos University, 28942 Madrid, Spain
| | - Johan Lahti
- Laboratory of Human Motricity, Education Sport and Health (LAMHESS), Université Côte d’Azur, F-06200 Nice, France
| | | | - Jurdan Mendiguchia
- Department of Physical Therapy, ZENTRUM Rehab and Performance Center, 31010 Barañain, Spain
| | | | - Jean-Benoît Morin
- Inter-University Laboratory of Human Movement Biology (LIBM EA 7424), University of Lyon, University Jean Monnet, F-42023 Saint Etienne, France
| |
Collapse
|
8
|
Benson LC, Räisänen AM, Clermont CA, Ferber R. Is This the Real Life, or Is This Just Laboratory? A Scoping Review of IMU-Based Running Gait Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:1722. [PMID: 35270869 PMCID: PMC8915128 DOI: 10.3390/s22051722] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023]
Abstract
Inertial measurement units (IMUs) can be used to monitor running biomechanics in real-world settings, but IMUs are often used within a laboratory. The purpose of this scoping review was to describe how IMUs are used to record running biomechanics in both laboratory and real-world conditions. We included peer-reviewed journal articles that used IMUs to assess gait quality during running. We extracted data on running conditions (indoor/outdoor, surface, speed, and distance), device type and location, metrics, participants, and purpose and study design. A total of 231 studies were included. Most (72%) studies were conducted indoors; and in 67% of all studies, the analyzed distance was only one step or stride or <200 m. The most common device type and location combination was a triaxial accelerometer on the shank (18% of device and location combinations). The most common analyzed metric was vertical/axial magnitude, which was reported in 64% of all studies. Most studies (56%) included recreational runners. For the past 20 years, studies using IMUs to record running biomechanics have mainly been conducted indoors, on a treadmill, at prescribed speeds, and over small distances. We suggest that future studies should move out of the lab to less controlled and more real-world environments.
Collapse
Affiliation(s)
- Lauren C. Benson
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Tonal Strength Institute, Tonal, San Francisco, CA 94107, USA
| | - Anu M. Räisänen
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Department of Physical Therapy Education, College of Health Sciences—Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Christian A. Clermont
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Sport Product Testing, Canadian Sport Institute Calgary, Calgary, AB T3B 6B7, Canada
| | - Reed Ferber
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Cumming School of Medicine, Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Running Injury Clinic, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Quantitative and Qualitative Running Gait Analysis through an Innovative Video-Based Approach. SENSORS 2021; 21:s21092977. [PMID: 33922801 PMCID: PMC8123008 DOI: 10.3390/s21092977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Quantitative and qualitative running gait analysis allows the early identification and the longitudinal monitoring of gait abnormalities linked to running-related injuries. A promising calibration- and marker-less video sensor-based technology (i.e., Graal), recently validated for walking gait, may also offer a time- and cost-efficient alternative to the gold-standard methods for running. This study aim was to ascertain the validity of an improved version of Graal for quantitative and qualitative analysis of running. In 33 healthy recreational runners (mean age 41 years), treadmill running at self-selected submaximal speed was simultaneously evaluated by a validated photosensor system (i.e., Optogait—the reference methodology) and by the video analysis of a posterior 30-fps video of the runner through the optimized version of Graal. Graal is video analysis software that provides a spectral analysis of the brightness over time for each pixel of the video, in order to identify its frequency contents. The two main frequencies of variation of the pixel’s brightness (i.e., F1 and F2) correspond to the two most important frequencies of gait (i.e., stride frequency and cadence). The Optogait system recorded step length, cadence, and its variability (vCAD, a traditional index of gait quality). Graal provided a direct measurement of F2 (reflecting cadence), an indirect measure of step length, and two indexes of global gait quality (harmony and synchrony index). The correspondence between quantitative indexes (Cadence vs. F2 and step length vs. Graal step length) was tested via paired t-test, correlations, and Bland–Altman plots. The relationship between qualitative indexes (vCAD vs. Harmony and Synchrony Index) was investigated by correlation analysis. Cadence and step length were, respectively, not significantly different from and highly correlated with F2 (1.41 Hz ± 0.09 Hz vs. 1.42 Hz ± 0.08 Hz, p = 0.25, r2 = 0.81) and Graal step length (104.70 cm ± 013.27 cm vs. 107.56 cm ± 13.67 cm, p = 0.55, r2 = 0.98). Bland–Altman tests confirmed a non-significant bias and small imprecision between methods for both parameters. The vCAD was 1.84% ± 0.66%, and it was significantly correlated with neither the Harmony nor the Synchrony Index (0.21 ± 0.03, p = 0.92, r2 = 0.00038; 0.21 ± 0.96, p = 0.87, r2 = 0.00122). These findings confirm the validity of the optimized version of Graal for the measurement of quantitative indexes of gait. Hence, Graal constitutes an extremely time- and cost-efficient tool suitable for quantitative analysis of running. However, its validity for qualitative running gait analysis remains inconclusive and will require further evaluation in a wider range of absolute and relative running intensities in different individuals.
Collapse
|
10
|
Taveira HV, de Lira CAB, Andrade MS, Viana RB, Tanaka H, Hill L, Nikolaidis PT, Knechtle B, Rosemann T, Vancini RL. Isokinetic Muscle Strength and Postural Sway of Recreationally Active Older Adults vs. Master Road Runners. Front Physiol 2021; 12:623150. [PMID: 33815138 PMCID: PMC8012768 DOI: 10.3389/fphys.2021.623150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Trunk muscle strength and control is an important prerequisite for everyday activities among elderly people decreasing the predisposition to falls. High levels of physical exercise performed by older athletes could offer benefits to core/trunk muscle strength and postural control compared with recreational physical activities and among elderly people with lower levels of physical activity. The present study aimed to compare trunk muscle strength and postural control of older running athletes vs. older physically active adults. Participants were master road runners (RUN, n = 15, six women, 64.3 ± 3.6 years) and physically active elderly (control group, CON, n = 15, six women, 65.4 ± 5.0 years) people that were submitted to the evaluations: esthesiometer, posturography (force plate), and isokinetic test (Biodex dynamometer) of trunk muscle extension and flexion. RUN presented higher values for relative peak torque of trunk extensor muscles at 60°/s (p = 0.046) and 180°/s (p = 0.007) and relative average power during trunk extension at 60°/s (p = 0.008) and 180°/s (p = 0.004) compared to CON. CON had a higher medial-lateral oscillation speed of the center of pressure in the stable condition with eyes closed (p = 0.004) compared to RUN. RUN presented higher isokinetic torque of extensor trunk muscles and better postural control than CON. This supposedly could help with postural control and balance and contribute to the prevention of falls among the elderly. The practice of running systematically by master athletes may partially explained our findings.
Collapse
Affiliation(s)
- Henrique V Taveira
- Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Claudio A B de Lira
- Setor de Fisiologia Humana e do Exercício, Laboratório de Avaliação do Movimento Humano, Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marilia S Andrade
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo B Viana
- Setor de Fisiologia Humana e do Exercício, Laboratório de Avaliação do Movimento Humano, Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia, Brazil
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Lee Hill
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | | | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Rodrigo L Vancini
- Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
11
|
Oliva-Lozano JM, Maraver EF, Fortes V, Muyor JM. Kinematic Analysis of the Postural Demands in Professional Soccer Match Play Using Inertial Measurement Units. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5971. [PMID: 33105576 PMCID: PMC7659945 DOI: 10.3390/s20215971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
The development of wearable sensors has allowed the analysis of trunk kinematics in match play, which is necessary for a better understanding of the postural demands of the players. The aims of this study were to analyze the postural demands of professional soccer players by playing position. A longitudinal study for 13 consecutive microcycles, which included one match per microcycle, was conducted. Wearable sensors with inertial measurement units were used to collect the percentage (%) of playing time spent and G-forces experienced in different trunk inclinations and the inclination required for different speeds thresholds. The inclination zone had a significant effect on the time percentage spent on each zone (p < 0.001, partial eta-squared (ηp2 = 0.85) and the G-forces experienced by the players (p < 0.001, ηp2 = 0.24). Additionally, a significant effect of the speed variable on the trunk inclination zones was found, since trunk flexion increased with greater speeds (p < 0.001; ηp2 = 0.73), except for midfielders. The players spent most of the time in trunk flexion between 20° and 40°; the greatest G-forces were observed in trunk extension zones between 0° and 30°, and a linear relationship between trunk inclination and speed was found. This study presents a new approach for the analysis of players' performance. Given the large volumes of trunk flexion and the interaction of playing position, coaches are recommended to incorporate position-specific training drills aimed to properly prepare the players for the perception-action demands (i.e., visual exploration and decision-making) of the match, as well as trunk strength exercises and other compensatory strategies before and after the match.
Collapse
Affiliation(s)
| | - Elisa F. Maraver
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain;
| | | | - José M. Muyor
- Health Research Centre, University of Almería, 04120 Almería, Spain;
- Laboratory of Kinesiology, Biomechanics and Ergonomics (KIBIOMER Lab.), Research Central Services, University of Almería, 04120 Almería, Spain
| |
Collapse
|
12
|
Oliva-Lozano JM, Maraver EF, Fortes V, Muyor JM. Effect of Playing Position, Match Half, and Match Day on the Trunk Inclination, G-Forces, and Locomotor Efficiency Experienced by Elite Soccer Players in Match Play. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5814. [PMID: 33066676 PMCID: PMC7602370 DOI: 10.3390/s20205814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
The rapid growth of wearable sensors has allowed the analysis of trunk kinematics during the match, which is necessary for having a better understanding of the postural demands of soccer players. However, some contextual variables may have an impact on the physical demands of the players. This study aimed to analyze the effect of three contextual variables (playing position, match half, and match day) on the sagittal trunk inclination, G-forces, and locomotor efficiency experienced by soccer players in match play. Then, wearable sensors were used to collect the trunk kinematics during 13 matches. Firstly, positional differences were found on the trunk inclination (p = 0.01) and the G-forces experienced by the players (p < 0.001). For example, the greatest and lowest trunk inclination was found for FW (~34.01°) and FB (~28.85°) while the greatest and lowest G-forces were found for WMF (1.16 G) and CD (1.12 G), respectively. However, there were no positional differences in the locomotor efficiency (p = 0.10). Secondly, the match half had a significant effect on the trunk inclination (p = 0.01) and the G-forces experienced by the players (p < 0.001) with significantly lower values observed during the second half. No differences between halves were found on the locomotor efficiency for any playing position (p = 0.41). Finally, no significant effect of match day on any variable was observed. This investigation is one of the first steps towards enhancing the understanding of trunk kinematics from elite soccer players. The positional differences found on the trunk inclination and G-forces imply that the development of position-specific training drills considering the postural demands is necessary to prepare the players not only for the physical demands but also for successful performance in the field of regard. The resistance to fatigue needs to be trained given the differences between halves.
Collapse
Affiliation(s)
| | - Elisa F. Maraver
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, 08018 Barcelona, Spain;
| | | | - José M. Muyor
- Health Research Centre, University of Almería, 04120 Almería, Spain;
- Laboratory of Kinesiology, Biomechanics and Ergonomics (KIBIOMER Lab.), Research Central Services, University of Almería, 04120 Almería, Spain
| |
Collapse
|
13
|
Locomotor Coordination, Visual Perception and Head Stability during Running. Brain Sci 2020; 10:brainsci10030174. [PMID: 32197422 PMCID: PMC7139831 DOI: 10.3390/brainsci10030174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
Perception and action are coupled such that information from the perceptual system is related to the dynamics of action in order to regulate behavior adaptively. Using running as a model of a cyclic behavior, this coupling involves a continuous, cyclic relationship between the runner’s perception of the environment and the necessary adjustments of the body that ultimately result in a stable pattern of behavior. The purpose of this paper is to illustrate how individuals relate visual perception to rhythmic locomotor coordination patterns in conditions during which foot–ground collisions and visual task demands are altered. We review the findings of studies conducted to illustrate how humans change their behavior to maintain head stability during running with and without various degrees of visual challenge from the environment. Finally, we show that the human body adapts specific segment/joint configuration and coordination patterns to maintain head stability, both in the lower extremity and upper body segments, together with an increase in coordinative variability. These results indicate that in human locomotion, under higher speed (running) and visual task demands, systematic adaptations occur in the rhythmic coupling between the perceptual and movement systems.
Collapse
|