1
|
Ghrkhlari S, Ahour F, Keshipour S. A novel electrochemical sensor for the determination of cadmium ions based on nitrogen-enriched carbon modified electrode. Sci Rep 2025; 15:441. [PMID: 39747973 PMCID: PMC11695622 DOI: 10.1038/s41598-024-84185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
In the present work, nitrogen-doped carbon was synthesized starting from a chitosan/urea mixture and immobilized at the surface of a bare glassy carbon electrode to detect Cd(II) ions using differential pulse-anodic stripping voltammetry method (DP-ASV). The synthesized nitrogen-doped carbon showed a significant potential for determining Cd(II) ions. Doping carbon with nitrogen atoms gives a structure with increased valence band energy, leading to acceleration of the electron transfer by creating an interaction of nitrogen's free electrons with Cd(II), which subsequently increases the peak current value. After the characterization of nitrogen-doped carbon by various methods, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the prepared sensor's electrochemical behavior. Under optimal conditions, the proposed sensor has a linear response of 3.0 to 150 nM and its detection limit is 2.0 nM. This sensor can analyze Cd(II) in tap and river water as real samples.
Collapse
Affiliation(s)
- S Ghrkhlari
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Fatemeh Ahour
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran.
- Nanotechnology Research Center, Urmia University, Urmia, Iran.
| | - S Keshipour
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
- Nanotechnology Research Center, Urmia University, Urmia, Iran
- Central Laboratory of Urmia University, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Villora-Picó JJ, Gil-Muñoz G, Sepúlveda-Escribano A, Pastor-Blas MM. The Facile Production of p-Chloroaniline Facilitated by an Efficient and Chemoselective Metal-Free N/S Co-Doped Carbon Catalyst. Int J Mol Sci 2024; 25:9603. [PMID: 39273549 PMCID: PMC11395487 DOI: 10.3390/ijms25179603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The catalytic hydrogenation of the toxic and harmful p-chloronitrobenzene to produce the value-added p-chloroaniline is an essential reaction for the sustainable chemical industry. Nevertheless, ensuring satisfactory control of its chemoselectivity is a great challenge. In this work, a N/S co-doped metal-free carbon catalyst has been fabricated by using cysteine as a source of C, N, and S. The presence of calcium citrate (porogen agent) in the mixture subjected to pyrolysis provided the carbon with porosity, which permitted us to overcome the issues associated with the loss of heteroatoms during an otherwise necessary activation thermal treatment. Full characterization was carried out and the catalytic performance of the metal-free carbon material was tested in the hydrogenation reaction of p-chloronitrobenzene to selectively produce p-chloroaniline. Full selectivity was obtained but conversion was highly dependent on the introduction of S due to the synergetic effect of S and N heteroatoms. The N/S co-doped carbon (CYSCIT) exhibits a mesoporous architecture which favors mass transfer and a higher doping level, with more exposed N and S doping atoms which act as catalytic sites for the hydrogenation of p-chloronitrobenzene, resulting in enhanced catalytic performance when compared to the N-doped carbon obtained from melamine and calcium citrate (MELCIT) used as a reference.
Collapse
Affiliation(s)
- Juan-José Villora-Picó
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Gema Gil-Muñoz
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Antonio Sepúlveda-Escribano
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - M Mercedes Pastor-Blas
- Laboratory of Advanced Materials, Department of Inorganic Chemistry, University Materials Institute of Alicante, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
| |
Collapse
|
3
|
Ibrahim HK, Abdulridha AA, Albo Hay Allah MA. Glutaraldehyde and terephthaldehyde-crosslinked chitosan for cationic and anionic dyes removal from aqueous solutions: Experimental, DFT, kinetic and thermodynamic studies. Int J Biol Macromol 2024; 262:129730. [PMID: 38280694 DOI: 10.1016/j.ijbiomac.2024.129730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Novel chitosan polymers were synthesized using two cross-linkers, Glutaraldehyde and Terephthaldehyde, to enhance stability and efficiency. Characterization techniques (XRD, FTIR, FE-SEM, TGA, DTG, BJH, and BET) confirmed successful synthesis. These polymers were employed as adsorbents for removing Malachite Green (MG) and Congo Red (CR) dyes from water. Batch experiments and DFT calculations investigated the adsorption process, thermodynamics, and kinetics. Results showed the CSGT-III polymer achieved the highest removal efficiency. For initial dye concentrations ([CR]o = 50 mg/L, [MG]o = 20 mg/L) and adsorbent doses (0.8 g/L for CR, 0.4 g/L for MG), removal efficiencies were 96.99 % for CR and 99.07 % for MG. Thermodynamic analysis confirmed the spontaneous nature of adsorption, and the process was endothermic for both dyes. The Langmuir model fitted adsorption isotherms well, indicating a homogeneous surface. Kinetic analysis revealed a pseudo-second-order model for both dyes.
Collapse
Affiliation(s)
- Hanadi K Ibrahim
- Ministry of Education, Educational Directorate of Karbala, Iraq; University of Warith Al-Anbiyaa, College of Nursing, Karbala, Iraq
| | | | - Mahmood A Albo Hay Allah
- Ministry of Education, Educational Directorate of Karbala, Iraq; University of Warith Al-Anbiyaa, College of Nursing, Karbala, Iraq
| |
Collapse
|
4
|
Sheikh MA, Chandok RS, Abida K. High energy density storage, antifungal activity and enhanced bioimaging by green self-doped heteroatom carbon dots. DISCOVER NANO 2023; 18:132. [PMID: 37870636 PMCID: PMC10593680 DOI: 10.1186/s11671-023-03910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Self-heteroatom-doped N-carbon dots (N-CDs) with a 2.35 eV energy gap and a 65.5% fluorescence quantum yield were created using a one-step, efficient, inexpensive, and environmentally friendly microwave irradiation method. FE-SEM, EDX, FT-IR, XRD, UV-VIS spectroscopy, FL spectroscopy, and CV electrochemical analysis were used to characterise the produced heteroatom-doped N-CDs. The graphitic carbon dot surface is doped with heteroatom functional groups such (S, P, K, Mg, Zn) = 1%, in addition to the additional passivating agent (N), according to the EDX surface morphology and the spontaneous heteroatom doping was caused by the heterogeneous chemical composition of pumpkin seeds. These spontaneous heteroatom-doped N-CDs possess quasispherical amorphous graphitic structure with an average size of less than 10 nm and the interplaner distance of 0.334 nm. Calculations utilising cyclic voltammetry showed that the heteroatom-doped N-CDs placed on nickel electrodes had a high specific capacitance value of 1044 F/g at a scan rate of 10 mV/s in 3 M of KOH electrolyte solution. Furthermore, it demonstrated a high energy and power density of 28.50 Wh/kg and 3350 W/kg, respectively. The higher value of specific capacitance and energy density were attributed to the fact that the Ni/CDs electrode material possesses both EDLC and PC properties due to the sufficient surface area and the multiple active sites of the prepared N-CDs. Furthermore, the heteroatom N-CDs revealed the antifungal action and bioimaging of the "Cladosporium cladosporioides" mould, which is mostly accountable for economic losses in agricultural products. The functional groups of nitrogen, sulphur, phosphorus, and zinc on the surface of the CDs have strong antibacterial and antifungal properties as well as fluorescence enhanced bioimaging.
Collapse
Affiliation(s)
| | - R S Chandok
- Sri Guru Tegh Bahadur Khalsa College, Jabalpur, India
| | - Khan Abida
- Government Degree College for Women Anantnag, Srinagar, India
| |
Collapse
|
5
|
Martins da Silva AY, Arouche TDS, Siqueira MRS, Ramalho TC, de Faria LJG, Gester RDM, Carvalho Junior RND, Santana de Oliveira M, Neto AMDJC. SARS-CoV-2 external structures interacting with nanospheres using docking and molecular dynamics. J Biomol Struct Dyn 2023; 42:9892-9907. [PMID: 37712854 DOI: 10.1080/07391102.2023.2252930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Coronavirus is caused by the SARS-CoV-2 virus has shown rapid proliferation and scarcity of treatments with proven effectiveness. In this way, we simulated the hospitalization of carbon nanospheres, with external active sites of the SARS-CoV-2 virus (M-Pro, S-Gly and E-Pro), which can be adsorbed or inactivated when interacting with the nanospheres. The computational procedures performed in this work were developed with the SwissDock server for molecular docking and the GROMACS software for molecular dynamics, making it possible to extract relevant data on affinity energy, distance between molecules, free Gibbs energy and mean square deviation of atomic positions, surface area accessible to solvents. Molecular docking indicates that all ligands have an affinity for the receptor's active sites. The nanospheres interact favorably with all proteins, showing promising results, especially C60, which presented the best affinity energy and RMSD values for all protein macromolecules investigated. The C60 with E-Pro exhibited the highest affinity energy of -9.361 kcal/mol, demonstrating stability in both molecular docking and molecular dynamics simulations. Our RMSD calculations indicated that the nanospheres remained predominantly stable, fluctuating within a range of 2 to 3 Å. Additionally, the analysis of other structures yielded promising results that hold potential for application in other proteases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anderson Yuri Martins da Silva
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
| | - Tiago da Silva Arouche
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
| | | | - Teodorico Castro Ramalho
- Postgraduate Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, Belém, Brazil
| | | | - Rodrigo do Monte Gester
- Institute of Exact Sciences (ICE), Federal University of the South and Southeast of Pará, Maraba, Brazil
| | - Raul Nunes de Carvalho Junior
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, Belém, Brazil
- Faculty of Food Engineering ITEC, Federal University of Pará, Belém, Brazil
| | | | - Antonio Maia de Jesus Chaves Neto
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- National Professional Master's in Physics Teaching, Federal University of Pará, Belém, Brazil
- Museu Paraense Emílio Goeldi, Diretoria, Coordenação de Botânica, Rua Augusto Corrêa, Belém, Brazil
| |
Collapse
|
6
|
Singh S, Naik TSSK, Uppara B, Narasimhappa P, Varshney R, Chauhan V, Shehata N, Thamaraiselvan C, Subramanian S, Singh J, Khan NA, Zahmatkesh S, Singh L, Ramamurthy PC. Novel and sustainable green sulfur-doped carbon nanospheres via hydrothermal process for Cd (II) ion removal. CHEMOSPHERE 2023; 328:138533. [PMID: 37004819 DOI: 10.1016/j.chemosphere.2023.138533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Herein, the synthesis, characterization, and adsorption performance of a novel green sulfur-doped carbon nanosphere (S-CNs) is studied to eliminate Cd (II) ions from water effectively. S-CNs were characterized using different techniques including Raman spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), , Brunauer-Emmett-Teller (BET) specific surface area analysis and Fourier transform infrared spectrophotometry (FT-IR), were performed. The efficient adsorption of the Cd (II) ions onto S-CNs strongly depended on pH, initial concentration of Cd (II) ions, S-CNs dosage, and temperature. Four isotherm models (Langmuir, Freundlich, Temkin & Redlich Peterson) were tested for modeling. Out of four, Langmuir showed more applicability than the other three models, with a Qmax value of 242.72 mg/g. Kinetic modeling studies suggest a superior fit of the obtained experimental data with the Elovich equation (linear) and pseudo-second-order (non-linear) rather than other linear and non-linear models. Data obtained from thermodynamic modeling indicates that using S-CNs for Cd (II) ions adsorption is a spontaneous and endothermic . The current work recommends using better and recyclable S-CNs to uptake excess Cd (II) ions.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - T S S K Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Basavaraju Uppara
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - R Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - V Chauhan
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - N Shehata
- Department of Environmental Science and Industrial Development, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - C Thamaraiselvan
- Inter Disciplinary Centre for Energy Research (ICER), Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - S Subramanian
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, 175001, Himachal Pradesh, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Masteri-Farahani M, Mosleh N, Ramzi S. Charge separation effect in the nanocomposites of Co 3O 4-QDs: visible light photocatalytic dye degradation in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56490-56501. [PMID: 35347623 DOI: 10.1007/s11356-022-19777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Photo-treatment of water is a promising environmentally friendly process that provides clean water and makes wastewater reusable in industry. Thus, efforts toward finding highly efficient photocatalysts have gained a huge attention to remove the organic contaminants in water. Quantum dots (QDs) are extensively utilized for photocatalytic remediation regarding their prominent optical, electrical, and chemical properties. Herein, we report the highly efficient and environmentally friendly synthesis of Co3O4-QDs-based graphene quantum dots (GQDs) and infinite coordination polymer comprising Zn nodes (Zn-ICP) nanocomposites as active and robust photocatalysts for photo-assisted water treatment. The pristine Co3O4-QDs, GQDs, and Zn-ICP showed lower activity under visible light. However, after functionalization of GQDs and Zn-ICP with Co3O4-QDs, the activity increased, and more photocatalytic efficiency was achieved. For instance, Zn-ICP, GQDs, Co3O4-QDs, Co3O4-QDs/Zn-ICP, and Co3O4-QDs/GQD degraded 21, 19, 52, 73, and 83% of rhodamine B (RhB) and 34, 46, 50, 73, and 76% of methylene blue (MB) after 60 min. The high photocatalytic efficiency was ascribed to the conjugation of Co3O4-QDs with GQDs and Zn-ICP which causes efficient absorption of visible light. The existence of Co3O4-QDs was found to be essential not only for effective charge separation but also widening the region of light absorption followed by increase in photocatalytic performances. Charge separation in photocatalytic reactions, energy levels of nanocomposites, and mechanism of the photocatalytic process were investigated by photoluminescence spectra (PL), Mott-Schottky, electrochemical impedance (EIS), and diffuse reflectance UV-Vis spectroscopy (DRS).
Collapse
Affiliation(s)
| | | | - Sajedeh Ramzi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| |
Collapse
|
8
|
Guleria A, Sachdeva H, Saini K, Gupta K, Mathur J. Recent trends and advancements in synthesis and applications of plant‐based green metal nanoparticles: A critical review. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anjali Guleria
- Department of Chemistry University of Rajasthan Jaipur India
| | | | - Kirti Saini
- Department of Chemistry University of Rajasthan Jaipur India
| | - Komal Gupta
- Department of Chemistry University of Rajasthan Jaipur India
| | - Jaya Mathur
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
9
|
M'barek I, Isik Z, Ozay Y, Özdemir S, Tollu G, Moussaoui Y, Dizge N. Nanocellulose synthesis from Tamarix aphylla and preparation of hybrid nanocellulose composites membranes with investigation of antioxidant and antibacterial effects. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Chen F, Yang M, Shi X, Qin X, Chen Q, Jia C, Jiang L, Luo D. 3D graphene supported p-n heterojunction of Ag3PO4/BiPO4 nanorods for enhanced simulated sunlight irradiated photocatalytic activity. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04753-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Water detoxification in terms of lead (II) and Bacillus subtilis bacteria using poly thiourea resin fabricated on magnetic multiwall carbon nanotubes substrate. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Corrigendum to “Green Synthesis of S- and N-Codoped Carbon Nanospheres and Application as Adsorbent of Pb (II) from Aqueous Solution”. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/9820608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Kazi SK, Inamdar SN, Kamble DP, Lohar KS, Suryawanshi AW, Tigote RM. Structural studies of silica‐supported spinel magnesium ferrite nanorods for photocatalytic degradation of methyl orange. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Subiya K. Kazi
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Shaukatali N. Inamdar
- Department of Pharmaceutical Chemistry, College of Health Sciences University of KwaZulu‐Natal (Westville) Durban South Africa
| | - Dhanraj P. Kamble
- Department of Chemistry S.B.E.S. College of Science Aurangabad India
| | - Kishan S. Lohar
- Department of Chemistry Shrikrishna Mahavidhyalya Gunjoti India
| | | | | |
Collapse
|
14
|
Huang Y, Zhang H, Zhang X, Yan L, Ling Y, Zou H, Chen Y, Liang M. Effect of Mesophase Pitch Incorporation on the Ablation Behavior and Mechanism of Phenolic Composites. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yisen Huang
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, People’s Republic of China
| | - Haoruo Zhang
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xueqin Zhang
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, People’s Republic of China
| | - Liwei Yan
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, People’s Republic of China
| | - Youquan Ling
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, People’s Republic of China
| | - Huawei Zou
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, People’s Republic of China
| | - Yang Chen
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, People’s Republic of China
| | - Mei Liang
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
15
|
Wijayanti ID, Saputra AK, Ibrahim F, Rasyida A, Suwarta P, Sidharta I. An ultra-low-cost and adjustable in-house electrospinning machine to produce PVA nanofiber. HARDWAREX 2022; 11:e00315. [PMID: 35592726 PMCID: PMC9111983 DOI: 10.1016/j.ohx.2022.e00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Electrospinning is a method that uses a high-voltage electric field to fabricate nanofiber by charging and ejecting a polymer solution through a syringe. Compared to other methods, it produces nanofiber using simple and easy techniques. The widespread usage of the commercial electrospinning machines (Spinboxsystems)-BASIC KIT type for beginners is limited due to its price of over USD15,595. Additionally, the Original Equipment Manufacturer (OEM) spare parts are expensive to replace, which increases the production cost of Polyvinyl Alcohol (PVA) polymer nanofiber and hinders its application in various fields. This led to the successful design and development of an in-house built electrospinning machine at a total cost below USD2,000. The new machine is easy and simple to operate while also producing PVA nanofiber with excellent properties.
Collapse
Affiliation(s)
- Ika Dewi Wijayanti
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia‘
| | - Ari Kurniawan Saputra
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia‘
| | - Faris Ibrahim
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia‘
| | - Amaliya Rasyida
- Department of Material and Metallurgy, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia
| | - Putu Suwarta
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia‘
| | - Indra Sidharta
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia‘
| |
Collapse
|
16
|
Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:1391-1463. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substantial increase in multidrug-resistant (MDR) pathogenic bacteria is a major threat to global health. Recently, the Centers for Disease Control and Prevention reported possibilities of greater deaths due to bacterial infections than cancer. Nanomaterials, especially small-sized (size ≤10 nm) silver nanoparticles (AgNPs), can be employed to combat these deadly bacterial diseases. However, high reactivity, instability, susceptibility to fast oxidation, and cytotoxicity remain crucial shortcomings for their uptake and clinical application. In this review, we discuss various AgNPs-based approaches to eradicate bacterial infections and provide comprehensive mechanistic insights and recent advances in antibacterial activity, antibiofilm activity, and cytotoxicity (both in vitro and in vivo) of AgNPs. The mechanistic of antimicrobial activity involves four steps: (i) adhesion of AgNPs to cell wall/membrane and its disruption; (ii) intracellular penetration and damage; (iii) oxidative stress; and (iv) modulation of signal transduction pathways. Numerous factors affecting the bactericidal activity of AgNPs such as shape, size, crystallinity, pH, and surface coating/charge have also been described in detail. The review also sheds light on antimicrobial photodynamic therapy and the role of AgNPs versus Ag+ ions release in bactericidal activities. In addition, different methods of synthesis of AgNPs have been discussed in brief.
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar Goshisht
- Department of Chemistry, Government Naveen College Tokapal, Bastar, Chhattisgarh 494442, India
| |
Collapse
|
17
|
Sonochemical synthesis and characterization of Cu2HgI4 nanostructures photocatalyst with enhanced visible light photocatalytic ability. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Synthesis of La9.33Si6O26 nano-photocatalysts by ultrasonically accelerated method for comparing water treatment efficiency with changing conditions. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Youssry SM, Abd Elkodous M, Kawamura G, Matsuda A. Carbon dots conjugated nanocomposite for the enhanced electrochemical performance of supercapacitor electrodes. RSC Adv 2021; 11:39636-39645. [PMID: 35494151 PMCID: PMC9044567 DOI: 10.1039/d1ra08045h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Naturally, a combination of metal oxides and carbon materials enhances the electrochemical performance of supercapacitor (SC) electrodes. We report on two different materials with highly conductive carbon dots (CDs) and a Co0.5Ni0.5Fe2O4/SiO2/TiO2 nanocomposite with a high power density, a high specific surface area, and a nanoporous structure to improve power and energy density in energy storage devices. A simple and low-cost process for synthesizing the hybrid SC electrode material Co0.5Ni0.5Fe2O4/SiO2/TiO2/CDs, known as CDs-nanocomposite, was performed via a layer-by-layer method; then, the CDs-nanocomposite was loaded on a nickel foam substrate for SC electrochemical measurements. A comparative study of the surface and morphology of CDs, the Co0.5Ni0.5Fe2O4/SiO2/TiO2 nanocomposite and CDs-nanocomposite was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), BET surface area, and Raman spectroscopy. The synthesized CDs-nanocomposite electrode material displayed enhanced electrochemical performance, having a high specific capacitance of 913.7 F g-1 at a scan rate of 5 mV s-1 and capacitance retention of 72.2%, as well as remarkable long-life cyclic stability over 3000 cycles in the three-electrode setup and 1 M KOH electrolyte. It also demonstrated a superior energy density of 130.7 W h kg-1. The improved electrochemical behavior of the CDs-nanocomposite for SC electrodes, together with its fast and simple synthesis method, provides a suitable point of reference. Other kinds of metal oxide nanocomposites can be synthesized for use in energy storage devices.
Collapse
Affiliation(s)
- Sally M Youssry
- Department of Chemistry, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| |
Collapse
|
20
|
Abkar E, Al-Nayili A, Amiri O, Ghanbari M, Salavati-Niasari M. Facile sonochemical method for preparation of Cs 2HgI 4 nanostructures as a promising visible-light photocatalyst. ULTRASONICS SONOCHEMISTRY 2021; 80:105827. [PMID: 34781043 PMCID: PMC8605229 DOI: 10.1016/j.ultsonch.2021.105827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Attempts are continuing to discover novel and efficient solutions to promote water grade and industrial sewage treatment. For the first time, we present a novel Cs2HgI4 photocatalyst functional below visible radiation. Cs2HgI4 nano photocatalyst has been prepared via an accelerated sonochemical approach to examine its photocatalytic progression. Several construction circumstances, including variations of power and time of sonication and performance of different surfactant types, were conducted to produce fine particles with uniform morphology. FESEM images attested that the presence of surfactant had an adverse and destructive effect on the morphology of products. The bandgap for Cs2HgI4 nanostructures was determined to be approximately 2.3 eV, making these nanostructures desirable for photocatalytic applications. The photocatalytic data confirmed that Cs2HgI4 could destroy acidic coloring agents greater than basic ones. The highest photodegradation was observed for methyl orange with 76.8%.
Collapse
Affiliation(s)
- Elham Abkar
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan P. O. Box. 87317-51167, Islamic Republic of Iran
| | - Abbas Al-Nayili
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Diwaniya 1753, Iraq
| | - Omid Amiri
- Department of Chemistry, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
| | - Mojgan Ghanbari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan P. O. Box. 87317-51167, Islamic Republic of Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan P. O. Box. 87317-51167, Islamic Republic of Iran.
| |
Collapse
|
21
|
Milad Tabatabaeinejad S, Amiri O, Ghanbari M, Salavati-Niasari M. Dy2Cu2O5 nanostructures: Sonochemical fabrication, characterization, and investigation of photocatalytic ability for elimination of organic contaminants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Vafaee F, Jahangiri M, Salavati-Niasari M. A new phase transfer nanocatalyst NiFe 2O 4-PEG for removal of dibenzothiophene by an ultrasound assisted oxidative process: kinetics, thermodynamic study and experimental design. RSC Adv 2021; 11:31448-31459. [PMID: 35496862 PMCID: PMC9041405 DOI: 10.1039/d1ra06751f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, NiFe2O4–PEG, an effective nanocatalyst was synthesized via a hydrothermal method using different PEG concentrations and synthesis times. The synthesized nanocatalyst was used in the ultrasound assisted oxidative desulfurization (UAOD) of model fuels (e.g. n-hexane and dibenzothiophene (DBT)) for the first time. The nanocatalyst was then characterized by XRD, FTIR, BET, SEM, VSM and TEM analyses. In addition, central composite design was used to evaluate the effective variables on the UAOD process. The optimal values of effective factors such as catalyst dose, oxidant amount, irradiation time and ultrasonic power to maximize of the percentage of sulfur removal were 0.149 g, 15 mL, 11.96 min, and 70 MHz, respectively. Moreover, the kinetic aspects of the oxidation reaction of DBT in the UAOD process were investigated using a pseudo-first-order model. Furthermore, using the Arrhenius equation, an activation energy of 35.86 kJ mol−1 was obtained. Additionally, thermodynamic analysis showed that the oxidation reaction of DBT was endothermic with a positive Gibbs free of energy, indicating the non-spontaneity of oxidation of DBT in the UAOD process. Moreover, the conversion rate of DBT has increased from 57% at 35 °C to 85% at 65 °C. In this study, NiFe2O4–PEG, an effective nanocatalyst was synthesized via a hydrothermal method using different PEG concentrations and synthesis times.![]()
Collapse
Affiliation(s)
- Fahimeh Vafaee
- Faculty of Chemical, Petroleum and Gas Eng., Semnan University P. O. Box 35196-45399 Semnan Islamic Republic of Iran
| | - Mansour Jahangiri
- Faculty of Chemical, Petroleum and Gas Eng., Semnan University P. O. Box 35196-45399 Semnan Islamic Republic of Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan Islamic Republic of Iran +98 31 55913201 +98 31 55912383
| |
Collapse
|
23
|
Abkar E, Ghanbari M, Amiri O, Salavati-Niasari M. Facile preparation and characterization of a novel visible-light-responsive Rb 2HgI 4 nanostructure photocatalyst. RSC Adv 2021; 11:30849-30859. [PMID: 35498939 PMCID: PMC9041529 DOI: 10.1039/d1ra03152j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
Visible photocatalytic procedures exhibit encouraging potential in water purification by increasing the photocatalytic performance. Therefore, the improvement of low-cost and efficient photocatalysts for environmental remediation is an increasing demand, and photocatalysts based on semiconductors have gained considerable attention due to their superior stability and activity. In the current study, novel Rb2HgI4 nanostructures were prepared via a simple, low-cost, and low-temperature solid-state method. The effects of different parameters such as type of surfactants, reaction temperature, and reaction time were studied on the structure, crystallinity, particle size, and shape of nanostructures. This new compound has a suitable band gap (2.6 eV) in the visible region. The photocatalytic performance of Rb2HgI4 was examined for the removal of coloring agents under visible light irradiation and it was found that this compound could degrade and eliminate acid black 1 by about 72.1%.
Collapse
Affiliation(s)
- Elham Abkar
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan Iran +98 31 55913201 +98 31 55912383
| | - Mojgan Ghanbari
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan Iran +98 31 55913201 +98 31 55912383
| | - Omid Amiri
- Faculty of Chemistry, Razi University Kermanshah 6714414971 Iran.,Department of Chemistry, College of Science, University of Raparin Rania Kurdistan Region Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan Iran +98 31 55913201 +98 31 55912383
| |
Collapse
|
24
|
Abbas Alshamsi H, Abbas. Al Bedairy M, Hussein Alwan S. Visible light assisted photocatalytic degradation of Rhodamine B dye on CdSe-ZnO nanocomposite: Characterization and kinetic studies. ACTA ACUST UNITED AC 2021. [DOI: 10.1088/1755-1315/722/1/012005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|