1
|
Jiang K, Tian K, Yu Y, Wu E, Yang M, Pan F, Qian J, Zhan C. Kupffer cells determine intrahepatic traffic of PEGylated liposomal doxorubicin. Nat Commun 2024; 15:6136. [PMID: 39033145 PMCID: PMC11271521 DOI: 10.1038/s41467-024-50568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Intrahepatic accumulation dominates organ distribution for most nanomedicines. However, obscure intrahepatic fate largely hampers regulation on their in vivo performance. Herein, PEGylated liposomal doxorubicin is exploited to clarify the intrahepatic fate of both liposomes and the payload in male mice. Kupffer cells initiate and dominate intrahepatic capture of liposomal doxorubicin, following to deliver released doxorubicin to hepatocytes with zonated distribution along the lobule porto-central axis. Increasing Kupffer cells capture promotes doxorubicin accumulation in hepatocytes, revealing the Kupffer cells capture-payload release-hepatocytes accumulation scheme. In contrast, free doxorubicin is overlooked by Kupffer cells, instead quickly distributing into hepatocytes by directly crossing fenestrated liver sinusoid endothelium. Compared to free doxorubicin, liposomal doxorubicin exhibits sustained metabolism/excretion due to the extra capture-release process. This work unveils the pivotal role of Kupffer cells in intrahepatic traffic of PEGylated liposomal therapeutics, and quantitively describes the intrahepatic transport/distribution/elimination process, providing crucial information for guiding further development of nanomedicines.
Collapse
Affiliation(s)
- Kuan Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200030, P.R. China.
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China.
| | - Kaisong Tian
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Yifei Yu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Ercan Wu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China
| | - Feng Pan
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China
| | - Jun Qian
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, P.R. China.
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, P.R. China.
| |
Collapse
|
2
|
Yang Q, Wu Y, Liu W, Ou X, Zhang W, Wang J, Chang Y, Wang F, Gao M, Liu S. Zonated iron deposition in the periportal zone of the liver is associated with selectively enhanced lipid synthesis. Liver Int 2024; 44:589-602. [PMID: 38082474 DOI: 10.1111/liv.15807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND AND AIMS Disorders in liver lipid metabolism have been implicated in a range of metabolic conditions, including fatty liver and liver cancer. Altered lipid distribution within the liver, shifting from the pericentral to the periportal zone under pathological circumstances, has been observed; however, the underlying mechanism remains elusive. Iron, an essential metal, exhibits a zonal distribution in the liver similar to that of lipids. Nevertheless, the precise relationship between iron and lipid distribution, especially in the pericentral and periportal zones, remains poorly understood. METHODS We conducted comprehensive in vitro and in vivo experiments, combining with in situ analysis and RNA sequencing, aiming for a detailed exploration of the causal relationship between iron accumulation and lipid metabolism. RESULTS Our research suggests that iron overload can disrupt the normal distribution of lipids within the liver, particularly in the periportal zone. Through meticulous gene expression profiling in both the pericentral and periportal zones, we identified pyruvate carboxylase (PC) as a pivotal regulator in iron overload-induced lipid accumulation. Additionally, we revealed that the activation of cyclic adenosine monophosphate response element binding protein (CREB) was indispensable for Pc gene expression when in response to iron overload. CONCLUSIONS In summary, our investigation unveils the crucial involvement of iron overload in fostering hepatic lipid accumulation in the periportal zone, at least partly mediated by the modulation of Pc expression. These insights offer new perspectives for understanding the pathogenesis of fatty liver diseases and their progression.
Collapse
Affiliation(s)
- Qiuyuan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Wei Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jianning Wang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yanzhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Farhan F, Trivedi M, Di Wu P, Cui W. Extracellular matrix modulates the spatial hepatic features in hepatocyte-like cells derived from human embryonic stem cells. Stem Cell Res Ther 2023; 14:314. [PMID: 37907977 PMCID: PMC10619266 DOI: 10.1186/s13287-023-03542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) can provide a valuable in vitro model for disease modelling and drug development. However, generating HLCs with characteristics comparable to hepatocytes in vivo is challenging. Extracellular matrix (ECM) plays an important role in supporting liver development and hepatocyte functions, but their impact on hepatocyte differentiation and maturation during hPSC differentiation remains unclear. Here, we investigate the effects of two ECM components-Matrigel and type I collagen on hepatic differentiation of human embryonic stem cells (hESCs). METHODS hESC-derived HLCs were generated through multistage differentiation in two-dimensional (2D) and three-dimensional (3D) cultures, incorporating either type I collagen or Matrigel during hepatic specification and maturation. The resulting HLCs was characterized for their gene expression and functionality using various molecular and cellular techniques. RESULTS Our results showed that HLCs cultured with collagen exhibited a significant increase in albumin and alpha-1 anti-trypsin expression with reduced AFP compared to HLCs cultured with Matrigel. They also secreted more urea than Matrigel cultures. However, these HLCs exhibited lower CYP3A4 activity and glycogen storage than those cultured with Matrigel. These functional differences in HLCs between collagen and Matrigel cultures closely resembled the hepatocytes of periportal and pericentral zones, respectively. CONCLUSION Our study demonstrates that Matrigel and collagen have differential effects on the differentiation and functionality of HLCs, which resemble, to an extent, hepatic zonation in the liver lobules. Our finding has an important impact on the generation of hPSC-HLCs for biomedical and medical applications.
Collapse
Affiliation(s)
- Faiza Farhan
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Manjari Trivedi
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Priscilla Di Wu
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
4
|
Trinchese G, Gena P, Cimmino F, Cavaliere G, Fogliano C, Garra S, Catapano A, Petrella L, Di Chio S, Avallone B, Calamita G, Mollica MP. Hepatocyte Aquaporins AQP8 and AQP9 Are Engaged in the Hepatic Lipid and Glucose Metabolism Modulating the Inflammatory and Redox State in Milk-Supplemented Rats. Nutrients 2023; 15:3651. [PMID: 37630841 PMCID: PMC10459073 DOI: 10.3390/nu15163651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Milk is an important source of nutrients and energy, but there are still many uncertainties regarding the health effects of milk and dairy products consumption. Milk from different species varies in physicochemical and nutritional properties. We previously showed that dietary supplements with different milks in rats trigger significant differences in metabolic and inflammatory states, modulating mitochondrial functions in metabolically active organs such as the liver and skeletal muscle. Here, we have deepened the effects of isoenergetic supplementation of milk (82 kJ) from cow (CM), donkey (DM) or human (HM) on hepatic metabolism to understand the interlink between mitochondrial metabolic flexibility, lipid storage and redox state and to highlight the possible role of two hepatocyte aquaporins (AQPs) of metabolic relevance, AQP8 and AQP9, in this crosstalk. Compared with rats with no milk supplementation, DM- and HM-fed rats had reduced hepatic lipid content with enhanced mitochondrial function and decreased oxidative stress. A marked reduction in AQP8, a hydrogen peroxide channel, was seen in the liver mitochondria of DM-fed rats compared with HM-fed, CM-fed and control animals. DM-fed or HM-fed rats also showed reduced hepatic inflammatory markers and less collagen and Kupffer cells. CM-fed rats showed higher hepatic fat content and increased AQP9 and glycerol permeability. A role of liver AQP8 and AQP9 is suggested in the different metabolic profiles resulting from milk supplementation.
Collapse
Affiliation(s)
- Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (P.G.); (S.G.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (P.G.); (S.G.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Silvia Di Chio
- Azienda Sociosanitaria Territoriale Fatebenefratelli (ASST FBF) SACCO, University of Milan, 20157 Milan, Italy;
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (P.G.); (S.G.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
5
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
6
|
Gu Z, Wang L, Dong Q, Xu K, Ye J, Shao X, Yang S, Lu C, Chang C, Hou Y, Zhai Y, Wang X, He F, Sun A. Aberrant LYZ expression in tumor cells serves as the potential biomarker and target for HCC and promotes tumor progression via csGRP78. Proc Natl Acad Sci U S A 2023; 120:e2215744120. [PMID: 37428911 PMCID: PMC10629575 DOI: 10.1073/pnas.2215744120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) takes the predominant malignancy of hepatocytes with bleak outcomes owing to high heterogeneity among patients. Personalized treatments based on molecular profiles will better improve patients' prognosis. Lysozyme (LYZ), a secretory protein with antibacterial function generally expressed in monocytes/macrophages, has been observed for the prognostic implications in different types of tumors. However, studies about the explicit applicative scenarios and mechanisms for tumor progression are still quite limited, especially for HCC. Here, based on the proteomic molecular classification data of early-stage HCC, we revealed that the LYZ level was elevated significantly in the most malignant HCC subtype and could serve as an independent prognostic predictor for HCC patients. Molecular profiles of LYZ-high HCCs were typical of those for the most malignant HCC subtype, with impaired metabolism, along with promoted proliferation and metastasis characteristics. Further studies demonstrated that LYZ tended to be aberrantly expressed in poorly differentiated HCC cells, which was regulated by STAT3 activation. LYZ promoted HCC proliferation and migration in both autocrine and paracrine manners independent of the muramidase activity through the activation of downstream protumoral signaling pathways via cell surface GRP78. Subcutaneous and orthotopic xenograft tumor models indicated that targeting LYZ inhibited HCC growth markedly in NOD/SCID mice. These results propose LYZ as a prognostic biomarker and therapeutic target for the subclass of HCC with an aggressive phenotype.
Collapse
Affiliation(s)
- Zhiwen Gu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Qian Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Jingnan Ye
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Songpeng Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Cuixiu Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Yuanjun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Xinxin Wang
- Department of Pathology, Beijing You’an Hospital, Capital Medical University, Beijing100069, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| |
Collapse
|