1
|
Ono S, Inoue M, Higashino M, Hayasaka S, Tanaka S, Egami H, Sakamoto N. Linked color imaging and upper gastrointestinal neoplasia. Dig Endosc 2024. [PMID: 39582388 DOI: 10.1111/den.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
White light imaging (WLI) can sometimes miss early upper gastrointestinal (UGI) neoplasms, particularly minimal changes and flat lesions. Moreover, endoscopic diagnosis of UGI neoplasia is strongly influenced by the condition of the surrounding mucosa. Recently, image-enhanced endoscopy techniques have been developed and used in clinical practice; one of which is linked color imaging (LCI), which has an expanded color range for better recognition of slight differences in mucosal color and enables easy diagnosis and differentiation of noncancerous mucosa from carcinoma. LCI does not require magnified observation and can clearly visualize structures using an ultrathin scope; therefore, it is useful for screening and surveillance endoscopy. LCI is particularly useful for detecting gastric cancer after Helicobacter pylori eradication, which accounts for most gastric cancers currently discovered, and displays malignant areas in orange or orange-red surrounded by intestinal metaplasia in lavender. Data on the use of convolutional neural network and computer-aided diagnosis with LCI for UGI neoplasm detection are currently being collected. Further studies are needed to determine the clinical role of LCI and whether it can replace WLI.
Collapse
Affiliation(s)
- Shoko Ono
- Division of Endoscopy, Hokkaido University Hospital, Hokkaido, Japan
| | - Masaki Inoue
- Division of Endoscopy, Hokkaido University Hospital, Hokkaido, Japan
| | - Masayuki Higashino
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Shuhei Hayasaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Shugo Tanaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hiroki Egami
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| |
Collapse
|
2
|
Fu Y, Agrawal S, Snyder DR, Yin S, Zhong N, Grunkemeyer JA, Dietz N, Corlett R, Hansen LA, Waddah AR, Nandipati KC, Xia J. Transcriptomic changes and gene fusions during the progression from Barrett's esophagus to esophageal adenocarcinoma. Biomark Res 2024; 12:78. [PMID: 39113153 PMCID: PMC11304724 DOI: 10.1186/s40364-024-00623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) has surged by 600% in recent decades, with a dismal 5-year survival rate of just 15%. Barrett's esophagus (BE), affecting about 2% of the population, raises the risk of EAC by 40-fold. Despite this, the transcriptomic changes during the BE to EAC progression remain unclear. Our study addresses this gap through comprehensive transcriptomic profiling to identify key mRNA signatures and genomic alterations, such as gene fusions. We performed RNA-sequencing on BE and EAC tissues from 8 individuals, followed by differential gene expression, pathway and network analysis, and gene fusion prediction. We identified mRNA changes during the BE-to-EAC transition and validated our results with single-cell RNA-seq datasets. We observed upregulation of keratin family members in EAC and confirmed increased levels of keratin 14 (KRT14) using immunofluorescence. More differentiated BE marker genes are downregulated during progression to EAC, suggesting undifferentiated BE subpopulations contribute to EAC. We also identified several gene fusions absent in paired BE and normal esophagus but present in EAC. Our findings are critical for the BE-to-EAC transition and have the potential to promote early diagnosis, prevention, and improved treatment strategies for EAC.
Collapse
Affiliation(s)
- Yusi Fu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA.
| | - Swati Agrawal
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Daniel R Snyder
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Shiwei Yin
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Na Zhong
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - James A Grunkemeyer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Nicholas Dietz
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
- Department of Pathology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ryan Corlett
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Laura A Hansen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Al-Refaie Waddah
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, Omaha, NE, USA.
| | - Jun Xia
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
3
|
Nagula S, Parasa S, Laine L, Shah SC. AGA Clinical Practice Update on High-Quality Upper Endoscopy: Expert Review. Clin Gastroenterol Hepatol 2024; 22:933-943. [PMID: 38385942 DOI: 10.1016/j.cgh.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 02/23/2024]
Abstract
DESCRIPTION The purpose of this Clinical Practice Update (CPU) Expert Review is to provide clinicians with guidance on best practices for performing a high-quality upper endoscopic exam. METHODS The best practice advice statements presented herein were developed from a combination of available evidence from published literature, guidelines, and consensus-based expert opinion. No formal rating of the strength or quality of the evidence was carried out, which aligns with standard processes for American Gastroenterological Association (AGA) Institute CPUs. These statements are meant to provide practical, timely advice to clinicians practicing in the United States. This Expert Review was commissioned and approved by the American Gastroenterological Association (AGA) Institute Clinical Practice Updates (CPU) Committee and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership, and underwent internal peer review by the CPU Committee and external peer review through standard procedures of Clinical Gastroenterology & Hepatology. BEST PRACTICE ADVICE 1: Endoscopists should ensure that upper endoscopy is being performed for an appropriate indication and that informed consent clearly explaining the risks, benefits, alternatives, sedation plan, and potential diagnostic and therapeutic interventions is obtained. These elements should be documented by the endoscopist before the procedure. BEST PRACTICE ADVICE 2: Endoscopists should ensure that adequate visualization of the upper gastrointestinal mucosa, using mucosal cleansing and insufflation as necessary, is achieved and documented. BEST PRACTICE ADVICE 3: A high-definition white-light endoscopy system should be used for upper endoscopy instead of a standard-definition white-light endoscopy system whenever possible. The endoscope used for the procedure should be documented in the procedure note. BEST PRACTICE ADVICE 4: Image enhancement technologies should be used during the upper endoscopic examination to improve the diagnostic yield for preneoplasia and neoplasia. Suspicious areas should be clearly described, photodocumented, and biopsied separately. BEST PRACTICE ADVICE 5: Endoscopists should spend sufficient time carefully inspecting the foregut mucosa in an anterograde and retroflexed view to improve the detection and characterization of abnormalities. BEST PRACTICE ADVICE 6: Endoscopists should document any abnormalities noted on upper endoscopy using established classifications and standard terminology whenever possible. BEST PRACTICE ADVICE 7: Endoscopists should perform biopsies for the evaluation and management of foregut conditions using standardized biopsy protocols. BEST PRACTICE ADVICE 8: Endoscopists should provide patients with management recommendations based on the specific endoscopic findings (eg, peptic ulcer disease, erosive esophagitis), and this should be documented in the medical record. If recommendations are contingent upon histopathology results (eg, H pylori infection, Barrett's esophagus), then endoscopists should document that appropriate guidance will be provided after results are available. BEST PRACTICE ADVICE 9: Endoscopists should document whether subsequent surveillance endoscopy is indicated and, if so, provide appropriate surveillance intervals. If the determination of surveillance is contingent on histopathology results, then endoscopists should document that surveillance intervals will be suggested after results are available.
Collapse
Affiliation(s)
- Satish Nagula
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Loren Laine
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Shailja C Shah
- Gastroenterology Section, Jennifer Moreno Department of Veterans Affairs Medical Center, San Diego, California; Division of Gastroenterology, University of California, San Diego, San Diego, California.
| |
Collapse
|
4
|
Takeda T, Asaoka D, Ueyama H, Abe D, Suzuki M, Inami Y, Uemura Y, Yamamoto M, Iwano T, Uchida R, Utsunomiya H, Oki S, Suzuki N, Ikeda A, Akazawa Y, Matsumoto K, Ueda K, Hojo M, Nojiri S, Tada T, Nagahara A. Development of an Artificial Intelligence Diagnostic System Using Linked Color Imaging for Barrett's Esophagus. J Clin Med 2024; 13:1990. [PMID: 38610762 PMCID: PMC11012507 DOI: 10.3390/jcm13071990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Barrett's esophagus and esophageal adenocarcinoma cases are increasing as gastroesophageal reflux disease increases. Using artificial intelligence (AI) and linked color imaging (LCI), our aim was to establish a method of diagnosis for short-segment Barrett's esophagus (SSBE). Methods: We retrospectively selected 624 consecutive patients in total at our hospital, treated between May 2017 and March 2020, who experienced an esophagogastroduodenoscopy with white light imaging (WLI) and LCI. Images were randomly chosen as data for learning from WLI: 542 (SSBE+/- 348/194) of 696 (SSBE+/- 444/252); and LCI: 643 (SSBE+/- 446/197) of 805 (SSBE+/- 543/262). Using a Vision Transformer (Vit-B/16-384) to diagnose SSBE, we established two AI systems for WLI and LCI. Finally, 126 WLI (SSBE+/- 77/49) and 137 LCI (SSBE+/- 81/56) images were used for verification purposes. The accuracy of six endoscopists in making diagnoses was compared to that of AI. Results: Study participants were 68.2 ± 12.3 years, M/F 330/294, SSBE+/- 409/215. The accuracy/sensitivity/specificity (%) of AI were 84.1/89.6/75.5 for WLI and 90.5/90.1/91.1/for LCI, and those of experts and trainees were 88.6/88.7/88.4, 85.7/87.0/83.7 for WLI and 93.4/92.6/94.6, 84.7/88.1/79.8 for LCI, respectively. Conclusions: Using AI to diagnose SSBE was similar in accuracy to using a specialist. Our finding may aid the diagnosis of SSBE in the clinic.
Collapse
Affiliation(s)
- Tsutomu Takeda
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Daisuke Asaoka
- Department of Gastroenterology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan; (D.A.); (M.S.); (Y.I.)
| | - Hiroya Ueyama
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Daiki Abe
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Maiko Suzuki
- Department of Gastroenterology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan; (D.A.); (M.S.); (Y.I.)
| | - Yoshihiro Inami
- Department of Gastroenterology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo 136-0075, Japan; (D.A.); (M.S.); (Y.I.)
| | - Yasuko Uemura
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Momoko Yamamoto
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Tomoyo Iwano
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Ryota Uchida
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Hisanori Utsunomiya
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Shotaro Oki
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Nobuyuki Suzuki
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Atsushi Ikeda
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Yoichi Akazawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Kohei Matsumoto
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Kumiko Ueda
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Mariko Hojo
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| | - Shuko Nojiri
- Department of Medical Technology Innovation Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
| | | | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (H.U.); (D.A.); (Y.U.); (M.Y.); (T.I.); (R.U.); (H.U.); (S.O.); (N.S.); (A.I.); (Y.A.); (K.M.); (K.U.); (M.H.); (A.N.)
| |
Collapse
|
5
|
Lee SP. Role of linked color imaging for upper gastrointestinal disease: present and future. Clin Endosc 2023; 56:546-552. [PMID: 37430400 PMCID: PMC10565447 DOI: 10.5946/ce.2023.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 07/12/2023] Open
Abstract
Techniques for upper gastrointestinal endoscopy are advancing to facilitate lesion detection and improve prognosis. However, most early tumors in the upper gastrointestinal tract exhibit subtle color changes or morphological features that are difficult to detect using white light imaging. Linked color imaging (LCI) has been developed to overcome these shortcomings; it expands or reduces color information to clarify color differences, thereby facilitating the detection and observation of lesions. This article summarizes the characteristics of LCI and advances in LCI-related research in the upper gastrointestinal tract field.
Collapse
Affiliation(s)
- Sang Pyo Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| |
Collapse
|
6
|
Abe Y, Sasaki Y, Yagi M, Mizumoto N, Onozato Y, Umehara M, Ueno Y. Endoscopic Diagnosis of Eosinophilic Esophagitis: Basics and Recent Advances. Diagnostics (Basel) 2022; 12:diagnostics12123202. [PMID: 36553209 PMCID: PMC9777529 DOI: 10.3390/diagnostics12123202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic, immune-mediated inflammatory disease, characterized by esophageal dysfunction and intense eosinophil infiltration localized in the esophagus. In recent decades, EoE has become a growing concern as a major cause of dysphagia and food impaction in adolescents and adults. EoE is a clinicopathological disease for which the histological demonstration of esophageal eosinophilia is essential for diagnosis. Therefore, the recognition of the characteristic endoscopic features with subsequent biopsy are critical for early definitive diagnosis and treatment, in order to prevent complications. Accumulating reports have revealed that EoE has several non-specific characteristic endoscopic findings, such as rings, furrows, white exudates, stricture/narrowing, edema, and crepe-paper esophagus. These findings were recently unified under the EoE endoscopic reference score (EREFS), which has been widely used as an objective, standard measurement for endoscopic EoE assessment. However, the diagnostic consistency of those findings among endoscopists is still inadequate, leading to underdiagnosis or misdiagnosis. Some endoscopic findings suggestive of EoE, such as multiple polypoid lesions, caterpillar sign, ankylosaurus back sign, and tug sign/pull sign, will aid the diagnosis. In addition, image-enhanced endoscopy represented by narrow band imaging, endocytoscopy, and artificial intelligence are expected to render endoscopic diagnosis more efficient and less invasive. This review focuses on suggestions for endoscopic assessment and biopsy, including recent advances in optical technology which may improve the diagnosis of EoE.
Collapse
Affiliation(s)
- Yasuhiko Abe
- Division of Endoscopy, Yamagata University Hospital, Yamagata 990-2321, Japan
- Correspondence:
| | - Yu Sasaki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-2321, Japan
| | - Makoto Yagi
- Division of Endoscopy, Yamagata University Hospital, Yamagata 990-2321, Japan
| | - Naoko Mizumoto
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-2321, Japan
| | - Yusuke Onozato
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-2321, Japan
| | - Matsuki Umehara
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-2321, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-2321, Japan
| |
Collapse
|
7
|
Sugano K, Spechler SJ, El-Omar EM, McColl KEL, Takubo K, Gotoda T, Fujishiro M, Iijima K, Inoue H, Kawai T, Kinoshita Y, Miwa H, Mukaisho KI, Murakami K, Seto Y, Tajiri H, Bhatia S, Choi MG, Fitzgerald RC, Fock KM, Goh KL, Ho KY, Mahachai V, O'Donovan M, Odze R, Peek R, Rugge M, Sharma P, Sollano JD, Vieth M, Wu J, Wu MS, Zou D, Kaminishi M, Malfertheiner P. Kyoto international consensus report on anatomy, pathophysiology and clinical significance of the gastro-oesophageal junction. Gut 2022; 71:1488-1514. [PMID: 35725291 PMCID: PMC9279854 DOI: 10.1136/gutjnl-2022-327281] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE An international meeting was organised to develop consensus on (1) the landmarks to define the gastro-oesophageal junction (GOJ), (2) the occurrence and pathophysiological significance of the cardiac gland, (3) the definition of the gastro-oesophageal junctional zone (GOJZ) and (4) the causes of inflammation, metaplasia and neoplasia occurring in the GOJZ. DESIGN Clinical questions relevant to the afore-mentioned major issues were drafted for which expert panels formulated relevant statements and textural explanations.A Delphi method using an anonymous system was employed to develop the consensus, the level of which was predefined as ≥80% of agreement. Two rounds of voting and amendments were completed before the meeting at which clinical questions and consensus were finalised. RESULTS Twenty eight clinical questions and statements were finalised after extensive amendments. Critical consensus was achieved: (1) definition for the GOJ, (2) definition of the GOJZ spanning 1 cm proximal and distal to the GOJ as defined by the end of palisade vessels was accepted based on the anatomical distribution of cardiac type gland, (3) chemical and bacterial (Helicobacter pylori) factors as the primary causes of inflammation, metaplasia and neoplasia occurring in the GOJZ, (4) a new definition of Barrett's oesophagus (BO). CONCLUSIONS This international consensus on the new definitions of BO, GOJ and the GOJZ will be instrumental in future studies aiming to resolve many issues on this important anatomic area and hopefully will lead to better classification and management of the diseases surrounding the GOJ.
Collapse
Affiliation(s)
- Kentaro Sugano
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Stuart Jon Spechler
- Division of Gastroenterology, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas, USA
| | - Emad M El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, Sydney, New South Wales, Australia
| | - Kenneth E L McColl
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takuji Gotoda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsunori Iijima
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| | - Haruhiro Inoue
- Digestive Disease Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | | | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Kobe, Japan
| | - Ken-Ichi Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Faculty of Medicine, Yuhu, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisao Tajiri
- Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | - Myung-Gyu Choi
- Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
| | - Kwong Ming Fock
- Department of Gastroenterology and Hepatology, Duke NUS School of Medicine, National University of Singapore, Singapore
| | | | - Khek Yu Ho
- Department of Medicine, National University of Singapore, Singapore
| | - Varocha Mahachai
- Center of Excellence in Digestive Diseases, Thammasat University and Science Resarch and Innovation, Bangkok, Thailand
| | - Maria O'Donovan
- Department of Histopathology, Cambridge University Hospital NHS Trust UK, Cambridge, UK
| | - Robert Odze
- Department of Pathology, Tuft University School of Medicine, Boston, Massachusetts, USA
| | - Richard Peek
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Massimo Rugge
- Department of Medicine DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Jose D Sollano
- Department of Medicine, University of Santo Tomas, Manila, Philippines
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen, Nurenberg, Germany
| | - Justin Wu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Peter Malfertheiner
- Medizinixhe Klinik und Poliklinik II, Ludwig Maximillian University Klinikum, Munich, Germany
- Klinik und Poliklinik für Radiologie, Ludwig Maximillian University Klinikum, Munich, Germany
| |
Collapse
|
8
|
Koike T, Saito M, Ohara Y, Hatta W, Masamune A. Current status of surveillance for Barrett's esophagus in Japan and the West. DEN OPEN 2022; 2:e94. [PMID: 35898591 PMCID: PMC9302351 DOI: 10.1002/deo2.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/06/2022]
Abstract
Prospective studies in western countries have shown that the obvious risk factors for Barrett's esophageal cancer are male sex, smoking habit, a longer length of Barrett's esophagus, and low‐grade dysplasia. However, few reports have prospectively examined risk factors for adenocarcinoma development from Barrett's esophagus in Japan. In the West, where adenocarcinoma is common among esophageal cancer, endoscopic surveillance of Barrett's esophagus every 2–5 years is recommended for early detection of adenocarcinoma. However, there is no established surveillance method in Japan. In recent years, the incidence of adenocarcinoma from long‐segment Barrett's esophagus and short‐segment Barrett's esophagus longer than 2 cm in Japan has been reported to be similar to the West. For surveillance of adenocarcinoma arising from Barrett's esophagus, recognizing the characteristics of superficial adenocarcinoma and carefully observing the entire Barrett's esophagus are needed. It has been reported that representative characteristics of Barrett's adenocarcinoma are a reddish area or a lesion located on the anterior to the right sidewall. It is necessary to establish surveillance methods for Barrett's esophagus sooner in Japan.
Collapse
Affiliation(s)
- Tomoyuki Koike
- Division of Gastroenterology Tohoku University Graduate School of Medicine Miyagi Japan
| | - Masahiro Saito
- Division of Gastroenterology Tohoku University Graduate School of Medicine Miyagi Japan
| | - Yuki Ohara
- Division of Gastroenterology Tohoku University Graduate School of Medicine Miyagi Japan
| | - Waku Hatta
- Division of Gastroenterology Tohoku University Graduate School of Medicine Miyagi Japan
| | - Atsushi Masamune
- Division of Gastroenterology Tohoku University Graduate School of Medicine Miyagi Japan
| |
Collapse
|
9
|
Kim SH, Hong SJ. Current Status of Image-Enhanced Endoscopy for Early Identification of Esophageal Neoplasms. Clin Endosc 2021; 54:464-476. [PMID: 34304482 PMCID: PMC8357583 DOI: 10.5946/ce.2021.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced esophageal cancer is known to have a poor prognosis. The early detection of esophageal neoplasms, including esophageal dysplasia and early esophageal cancer, is highly important for the accurate treatment of the disease. However, esophageal dysplasia and early esophageal cancer are usually subtle and can be easily missed. In addition to the early detection, proper pretreatment evaluation of the depth of invasion of esophageal cancer is very important for curative treatment. The progression of non-invasive diagnosis via image-enhanced endoscopy techniques has been shown to aid the early detection and estimate the depth of invasion of early esophageal cancer and, as a result, may provide additional opportunities for curative treatment. Here, we review the advancement of image-enhanced endoscopy-related technologies and their role in the early identification of esophageal neoplasms.
Collapse
Affiliation(s)
- Shin Hee Kim
- Digestive Disease Center and Research Institute, Department of Internal Medicine, Department of Biostatistics, Soonchunghyang University School of Medicine, Bucheon, Korea
| | - Su Jin Hong
- Digestive Disease Center and Research Institute, Department of Internal Medicine, Department of Biostatistics, Soonchunghyang University School of Medicine, Bucheon, Korea
| |
Collapse
|