1
|
Kąpa M, Koryciarz I, Kustosik N, Jurowski P, Pniakowska Z. Future Directions in Diabetic Retinopathy Treatment: Stem Cell Therapy, Nanotechnology, and PPARα Modulation. J Clin Med 2025; 14:683. [PMID: 39941353 PMCID: PMC11818668 DOI: 10.3390/jcm14030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
This narrative review focuses on innovative treatment approaches to diabetic retinopathy to meet the urgent demand for advancements in managing both the early and late stages of the disease. Recent studies highlight the potential of adipose stem cells and their secreted factors in mitigating the retinal complications of diabetes, with promising results in improving visual acuity and reducing inflammation and angiogenesis in diabetic retinopathy. However, caution is warranted regarding the safety and long-term therapeutic effects of adipose stem cells transplantation. Bone marrow mesenchymal stem cells can also mitigate retinal damage in diabetic retinopathy. Studies demonstrate that bone marrow mesenchymal stem cells-derived exosomes can suppress the Wnt/β-catenin pathway, reducing oxidative stress, inflammation, and angiogenesis in the diabetic retina, offering promise for future diabetic retinopathy treatments. Nanotechnology has the ability to precisely target the retina and minimize systemic side effects. Nanoparticles and nanocarriers offer improved bioavailability, sustained release of therapeutics, and potential for synergistic effects. They can be a new way of effective treatment and prevention of diabetic retinopathy. Activation and modulation of PPARα as a means for diabetic retinopathy treatment has been widely investigated in recent years and demonstrated promising effects in clinical trials. PPARα activation turned out to be a promising therapeutic method for treating dyslipidemia, inflammation, and insulin sensitivity. The combination of PPARα modulators with small molecules offers an interesting perspective for retinal diseases' therapy.
Collapse
Affiliation(s)
- Maria Kąpa
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
| | - Iga Koryciarz
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
| | - Natalia Kustosik
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
| | - Piotr Jurowski
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
| | - Zofia Pniakowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland; (M.K.); (N.K.); (P.J.); (Z.P.)
- Optegra Eye Clinic, 90-127 Lodz, Poland
| |
Collapse
|
2
|
Shen T, Lin R, Hu C, Yu D, Ren C, Li T, Zhu M, Wan Z, Su T, Wu Y, Cai W, Yu J. Succinate-induced macrophage polarization and RBP4 secretion promote vascular sprouting in ocular neovascularization. J Neuroinflammation 2023; 20:308. [PMID: 38129891 PMCID: PMC10734053 DOI: 10.1186/s12974-023-02998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Pathological neovascularization is a pivotal biological process in wet age-related macular degeneration (AMD), retinopathy of prematurity (ROP) and proliferative diabetic retinopathy (PDR), in which macrophages (Mφs) play a key role. Tip cell specialization is critical in angiogenesis; however, its interconnection with the surrounding immune environment remains unclear. Succinate is an intermediate in the tricarboxylic acid (TCA) cycle and was significantly elevated in patients with wet AMD by metabolomics. Advanced experiments revealed that SUCNR1 expression in Mφ and M2 polarization was detected in abnormal vessels of choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR) models. Succinate-induced M2 polarization via SUCNR1, which facilitated vascular endothelial cell (EC) migration, invasion, and tubulation, thus promoting angiogenesis in pathological neovascularization. Furthermore, evidence indicated that succinate triggered the release of RBP4 from Mφs into the surroundings to regulate endothelial sprouting and pathological angiogenesis via VEGFR2, a marker of tip cell formation. In conclusion, our results suggest that succinate represents a novel class of vasculature-inducing factors that modulate Mφ polarization and the RBP4/VEGFR2 pathway to induce pathological angiogenic signaling through tip cell specialization.
Collapse
Affiliation(s)
- Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ruoyi Lin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tu Su
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China.
| |
Collapse
|
3
|
Ning X, Liu N, Sun T, You Y, Luo Y, Kang E, Chen Z, Wang Y, Ren J. Promotion of adipose stem cell transplantation using GelMA hydrogel reinforced by PLCL/ADM short nanofibers. Biomed Mater 2023; 18:065003. [PMID: 37647920 DOI: 10.1088/1748-605x/acf551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) show poor survival after transplantation, limiting their clinical application. In this study, a series of poly(l-lactide-co-ϵ-caprolactone) (PLCL)/acellular dermal matrix (ADM) nanofiber scaffolds with different proportions were prepared by electrospinning. By studying their morphology, hydrophilicity, tensile mechanics, and biocompatibility, PLCL/ADM nanofiber scaffolds with the best composition ratio (PLCL:ADM = 7:3) were selected to prepare short nanofibers. And based on this, injectable gelatin methacryloyl (GelMA) hydrogel loaded with PLCL/ADM short nanofibers (GelMA-Fibers) was constructed as a transplantation vector of ADSCs. ADSCs and GelMA-Fibers were co-cultured, and the optimal loading concentration of PLCL/ADM nanofibers was investigated by cell proliferation assay, live/dead cell staining, and cytoskeleton stainingin vitro. In vivoinvestigations were also performed by H&E staining, Oil red O staining, and TUNEL staining, and the survival and apoptosis rates of ADSCs transplantedin vivowere analyzed. It was demonstrated that GelMA-Fibers could effectively promote the proliferation of ADSCsin vitro. Most importantly, GelMA-Fibers increased the survival rate of ADSCs transplantation and decreased their apoptosis rate within 14 d. In conclusion, the constructed GelMA-Fibers would provide new ideas and options for stem cell tissue engineering and stem cell-based clinical therapies.
Collapse
Affiliation(s)
- Xuchao Ning
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
- Department of Plastic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Na Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao, People's Republic of China
| | - Tiancai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, People's Republic of China
| | - Yong You
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yanan Luo
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Enhao Kang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Zhenyu Chen
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuanfei Wang
- Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People's Republic of China
| | - Jizhen Ren
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Lin F, Xie M, Sheng X, Guo L, Jia J, Wang Y. Research trends in the field of retinitis pigmentosa from 2002 to 2021: a 20 years bibliometric analysis. Int Ophthalmol 2022; 43:1825-1833. [DOI: 10.1007/s10792-022-02581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
|
5
|
Tian H, Chen Z, Zhu X, Ou Q, Wang Z, Wu B, Xu JY, Jin C, Gao F, Wang J, Zhang J, Zhang J, Lu L, Xu GT. Induced retinal pigment epithelial cells with anti-epithelial-to-mesenchymal transition ability delay retinal degeneration. iScience 2022; 25:105050. [PMID: 36185374 PMCID: PMC9519511 DOI: 10.1016/j.isci.2022.105050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
The hostile microenvironment of the retina in patients with age-related macular degeneration (AMD) may trigger epithelial-to-mesenchymal transition (EMT) of grafted retinal pigment epithelial (RPE) cells, thus attenuating the therapeutic outcome. Here, we transformed human dedifferentiated induced pluripotent stem cell-derived RPE (iPSC-RPE) cells into induced RPE (iRPE) cells using a cocktail of four transcription factors (TFs)—CRX, MITF-A, NR2E1, and C-MYC. These critical TFs maintained the epithelial property of iRPE cells by regulating the expression of bmp7, forkhead box f2, lin7a, and pard6b, and conferred resistance to TGF-β-induced EMT in iRPE cells by targeting ppm1a. The iRPE cells with Tet-on system-regulated c-myc expression exhibited EMT resistance and better therapeutic function compared with iPSC-RPE cells in rat AMD model. Our study demonstrates that endowing RPE cells with anti-EMT property avoids the risk of EMT after cells are grafted into the subretinal space, and it may provide a suitable candidate for AMD treatment. CRX, MITF-A, NR2E1, and C-MYC transform De-iPSC-RPE cells into iRPE cells iRPE cells have resistance to TGF-β-induced EMT BMP7, FOXF2, LIN7A, PARD6B, and PPM1A mediate the functions of TFs in iRPE cells iRPE cells have better retinal protective function than iPSC-RPE cells
Collapse
|
6
|
Liu W, Liu S, Li P, Yao K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int J Mol Sci 2022; 23:ijms23094883. [PMID: 35563274 PMCID: PMC9101511 DOI: 10.3390/ijms23094883] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is genetically heterogeneous retinopathy caused by photoreceptor cell death and retinal pigment epithelial atrophy that eventually results in blindness in bilateral eyes. Various photoreceptor cell death types and pathological phenotypic changes that have been disclosed in RP demand in-depth research of its pathogenic mechanism that may account for inter-patient heterogeneous responses to mainstream drug treatment. As the primary method for studying the genetic characteristics of RP, molecular biology has been widely used in disease diagnosis and clinical trials. Current technology iterations, such as gene therapy, stem cell therapy, and optogenetics, are advancing towards precise diagnosis and clinical applications. Specifically, technologies, such as effective delivery vectors, CRISPR/Cas9 technology, and iPSC-based cell transplantation, hasten the pace of personalized precision medicine in RP. The combination of conventional therapy and state-of-the-art medication is promising in revolutionizing RP treatment strategies. This article provides an overview of the latest research on the pathogenesis, diagnosis, and treatment of retinitis pigmentosa, aiming for a convenient reference of what has been achieved so far.
Collapse
|
7
|
Nair DSR, Thomas BB. Stem Cell-based Treatment Strategies for Degenerative Diseases of the Retina. Curr Stem Cell Res Ther 2022; 17:214-225. [PMID: 34348629 PMCID: PMC9129886 DOI: 10.2174/1574888x16666210804112104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The main cause of progressive vision impairment in retinal degenerative diseases is the dysfunction of photoreceptors and the underlying retinal pigment epithelial cells. The inadequate regenerative capacity of the neural retina and lack of established therapeutic options demand the development of clinical-grade protocols to halt the degenerative process in the eye or replace the damaged cells by using stem cell-derived products. Recently, stem cell-based regenerative therapies have been at the forefront of clinical investigations for retinal dystrophies. OBJECTIVE This article will review different stem cell-based therapies currently employed for retinal degenerative diseases, recent clinical trials, and major challenges in the translation of these therapies from bench to bedside. METHODOLOGY A systematic literature review was conducted to identify potentially relevant articles published in MEDLINE/PubMed, Embase, ClinicalTrials.gov, Drugs@FDA, European Medicines Agency, and World Health Organization International Clinical Trials Registry Platform. RESULTS Transplantation of healthy cells to replace damaged cells in the outer retina is a clinically relevant concept because the inner retina that communicates with the visual areas of the brain remains functional even after the photoreceptors are completely lost. Various methods have been established for the differentiation of pluripotent stem cells into different retinal cell types that can be used for therapies. Factors released from transplanted somatic stem cells showed trophic support and photoreceptor rescue during the early stages of the disease. Several preclinical and phase I/II clinical studies using terminally differentiated photoreceptor/retinal pigment epithelial cells derived from pluripotent stem cells have shown proof of concept for visual restoration in Age-related Macular Degeneration (AMD), Stargardt disease, and Retinitis Pigmentosa (RP). CONCLUSION Cell replacement therapy has great potential for vision restoration. The results obtained from the initial clinical trials are encouraging and indicate its therapeutic benefits. The current status of the therapies suggests that there is a long way to go before these results can be applied to routine clinical practice. Input from the ongoing multicentre clinical trials will give a more refined idea for the future design of clinical-grade protocols to transplant GMP level HLA matched cells.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Biju B. Thomas
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, USA,Correspondence: , Tel: 323-442-5593
| |
Collapse
|
8
|
Sharma A, Jaganathan BG. Stem Cell Therapy for Retinal Degeneration: The Evidence to Date. Biologics 2021; 15:299-306. [PMID: 34349498 PMCID: PMC8327474 DOI: 10.2147/btt.s290331] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
There is a rise in the number of people who have vision loss due to retinal diseases, and conventional therapies for treating retinal degeneration fail to repair and regenerate the damaged retina. Several studies in animal models and human trials have explored the use of stem cells to repair the retinal tissue to improve visual acuity. In addition to the treatment of age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies were used to treat genetic diseases such as retinitis pigmentosa (RP) and Stargardt’s disease, characterized by gradual loss of photoreceptor cells in the retina. Transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have shown promising results in improving retinal function in various preclinical models of retinal degeneration and clinical studies without any severe side effects. Mesenchymal stem cells (MSCs) were utilized to treat optic neuropathy, RP, DR, and glaucoma with positive clinical outcomes. This review summarizes the preclinical and clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration.
Collapse
Affiliation(s)
- Amit Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
9
|
Koh AEH, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Ng MH, Mohd Isa H, Then KY, Bastion MLC, Farhana A, Khursheed Alam M, Subbiah SK, Mok PL. Transplanted Erythropoietin-Expressing Mesenchymal Stem Cells Promote Pro-survival Gene Expression and Protect Photoreceptors From Sodium Iodate-Induced Cytotoxicity in a Retinal Degeneration Model. Front Cell Dev Biol 2021; 9:652017. [PMID: 33987180 PMCID: PMC8111290 DOI: 10.3389/fcell.2021.652017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) are highly regarded as a potential treatment for retinal degenerative disorders like retinitis pigmentosa and age-related macular degeneration. However, donor cell heterogeneity and inconsistent protocols for transplantation have led to varied outcomes in clinical trials. We previously showed that genetically-modifying MSCs to express erythropoietin (MSCEPO) improved its regenerative capabilities in vitro. Hence, in this study, we sought to prove its potential in vivo by transplanting MSCsEPO in a rat retinal degeneration model and analyzing its retinal transcriptome using RNA-Seq. Firstly, MSCsEPO were cultured and expanded before being intravitreally transplanted into the sodium iodate-induced model. After the procedure, electroretinography (ERG) was performed bi-weekly for 30 days. Histological analyses were performed after the ERG assessment. The retina was then harvested for RNA extraction. After mRNA-enrichment and library preparation, paired-end RNA-Seq was performed. Salmon and DESeq2 were used to process the output files. The generated dataset was then analyzed using over-representation (ORA), functional enrichment (GSEA), and pathway topology analysis tools (SPIA) to identify enrichment of key pathways in the experimental groups. The results showed that the MSCEPO-treated group had detectable ERG waves (P <0.05), which were indicative of successful phototransduction. The stem cells were also successfully detected by immunohistochemistry 30 days after intravitreal transplantation. An initial over-representation analysis revealed a snapshot of immune-related pathways in all the groups but was mainly overexpressed in the MSC group. A subsequent GSEA and SPIA analysis later revealed enrichment in a large number of biological processes including phototransduction, regeneration, and cell death (Padj <0.05). Based on these pathways, a set of pro-survival gene expressions were extracted and tabulated. This study provided an in-depth transcriptomic analysis on the MSCEPO-treated retinal degeneration model as well as a profile of pro-survival genes that can be used as candidates for further genetic enhancement studies on stem cells.
Collapse
Affiliation(s)
- Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hiba Amer Alsaeedi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Munirah Binti Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chenshen Lam
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Hairul Nizam Harun
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Hazlita Mohd Isa
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kong Yong Then
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
10
|
Reevolution of Tissue Regeneration: From Recent Advances in Adipose Stem Cells to Novel Therapeutic Approaches. Stem Cells Int 2021; 2021:2179429. [PMID: 33628265 PMCID: PMC7892218 DOI: 10.1155/2021/2179429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
|
11
|
Gu C, Zhang H, Gao Y. Adipose mesenchymal stem cells-secreted extracellular vesicles containing microRNA-192 delays diabetic retinopathy by targeting ITGA1. J Cell Physiol 2020; 236:5036-5051. [PMID: 33325098 DOI: 10.1002/jcp.30213] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) has characteristics of early loss of capillary pericytes, contributing to aberrant endothelial proliferation and angiogenesis. The function of extracellular vesicles (Evs) derived from mesenchymal stem cells (MSCs) in angiogenesis and endothelial proliferation were investigated in the present study. In particular, the role of microRNA-192 (miR-192) was described. Firstly, the GSE60436 data set was applied to screen out that integrin subunit α1 (ITGA1) was overexpressed in DR. Subsequently, streptozotocin (STZ) was used to induce diabetes in rats, which was later subjected to intravitreal injection of targeted shRNAs. ITGA1 knockdown alleviated inflammation and angiogenesis in STZ-induced diabetic retina. Evs were extracted from MSCs and injected into rat vitreous. Meanwhile, human retinal microvascular endothelial cells, Müller cells, and retinal pigment epithelium cells were exposed to high glucose. MSC-derived Evs relieved inflammatory response and angiogenesis by shuttling miR-192. miR-192 targeted and negatively regulated ITGA1, thereby ameliorating diabetic retinal damage. Our study established that miR-192 released by Evs from MSCs could delay the events of the inflammatory response and angiogenesis in DR and may represent a possible therapeutic approach for the treatment of DR.
Collapse
Affiliation(s)
- Cao Gu
- Department of Ophthalmology, Changhai Hospital Affiliated to Navy Military Medical University, Shanghai, China
| | - Hongjun Zhang
- Department of Ophthalmology, Minhang Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yu Gao
- Department of Ophthalmology, Changhai Hospital Affiliated to Navy Military Medical University, Shanghai, China
| |
Collapse
|