1
|
Sarkar P, Gopi P, Pandya P, Paria S, Hossain M, Siddiqui MH, Alamri S, Bhadra K. Insights on the comparative affinity of ribonucleic acids with plant-based beta carboline alkaloid, harmine: Spectroscopic, calorimetric and computational evaluation. Heliyon 2024; 10:e34183. [PMID: 39100473 PMCID: PMC11295990 DOI: 10.1016/j.heliyon.2024.e34183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Small molecules as ligands target multifunctional ribonucleic acids (RNA) for therapeutic engagement. This study explores how the anticancer DNA intercalator harmine interacts various motifs of RNAs, including the single-stranded A-form poly (rA), the clover leaf tRNAphe, and the double-stranded A-form poly (rC)-poly (rG). Harmine showed the affinity to the polynucleotides in the order, poly (rA) > tRNAphe > poly (rC)·poly (rG). While no induced circular dichroism change was detected with poly (rC)poly (rG), significant structural alterations of poly (rA) followed by tRNAphe and occurrence of concurrent initiation of optical activity in the attached achiral molecule of alkaloid was reported. At 25 °C, the affinity further showed exothermic and entropy-driven binding. The interaction also highlighted heat capacity (ΔC o p ) and Gibbs energy contribution from the hydrophobic transfer (ΔG hyd) of binding with harmine. Molecular docking calculations indicated that harmine exhibits higher affinity for poly (rA) compared to tRNAphe and poly (rC)·poly (rG). Subsequent molecular dynamics simulations were conducted to investigate the binding mode and stability of harmine with poly(A), tRNAphe, and poly (rC)·poly (rG). The results revealed that harmine adopts a partial intercalative binding with poly (rA) and tRNAphe, characterized by pronounced stacking forces and stronger binding free energy observed with poly (rA), while a comparatively weaker binding free energy was observed with tRNAphe. In contrast, the stacking forces with poly (rC)·poly (rG) were comparatively less pronounced and adopts a groove binding mode. It was also supported by ferrocyanide quenching analysis. All these findings univocally provide detailed insight into the binding specificity of harmine, to single stranded poly (rA) over other RNA motifs, probably suggesting a self-structure formation in poly (rA) with harmine and its potential as a lead compound for RNA based drug targeting.
Collapse
Affiliation(s)
- Paromita Sarkar
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Samaresh Paria
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Maidul Hossain
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kakali Bhadra
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| |
Collapse
|
2
|
Bararia A, Chakraborty P, Roy P, Chattopadhay BK, Das A, Chatterjee A, Sikdar N. Emerging role of non-invasive and liquid biopsy biomarkers in pancreatic cancer. World J Gastroenterol 2023; 29:2241-2260. [PMID: 37124888 PMCID: PMC10134423 DOI: 10.3748/wjg.v29.i15.2241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
A global increase in the incidence of pancreatic cancer (PanCa) presents a major concern and health burden. The traditional tissue-based diagnostic techniques provided a major way forward for molecular diagnostics; however, they face limitations based on diagnosis-associated difficulties and concerns surrounding tissue availability in the clinical setting. Late disease development with asymptomatic behavior is a drawback in the case of existing diagnostic procedures. The capability of cell free markers in discriminating PanCa from autoimmune pancreatitis and chronic pancreatitis along with other precancerous lesions can be a boon to clinicians. Early-stage diagnosis of PanCa can be achieved only if these biomarkers specifically discriminate the non-carcinogenic disease stage from malignancy with respect to tumor stages. In this review, we comprehensively described the non-invasive disease detection approaches and why these approaches are gaining popularity for their early-stage diagnostic capability and associated clinical feasibility.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Prosenjeet Chakraborty
- Department of Molecular Biosciences, SVYASA School of Yoga and Naturopathy, Bangalore 560105, India
| | - Paromita Roy
- Department of Pathology, Tata Medical Center, Kolkata 700160, India
| | | | - Amlan Das
- Department of Biochemistry, Royal Global University, Assam 781035, India
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9061, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
3
|
Raut P, Nimmakayala RK, Batra SK, Ponnusamy MP. Clinical and Molecular Attributes and Evaluation of Pancreatic Cystic Neoplasm. Biochim Biophys Acta Rev Cancer 2023; 1878:188851. [PMID: 36535512 PMCID: PMC9898173 DOI: 10.1016/j.bbcan.2022.188851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are all considered "Pancreatic cystic neoplasms (PCNs)" and show a varying risk of developing into pancreatic ductal adenocarcinoma (PDAC). These lesions display different molecular characteristics, mutations, and clinical manifestations. A lack of detailed understanding of PCN subtype characteristics and their molecular mechanisms limits the development of efficient diagnostic tools and therapeutic strategies for these lesions. Proper in vivo mouse models that mimic human PCNs are also needed to study the molecular mechanisms and for therapeutic testing. A comprehensive understanding of the current status of PCN biology, mechanisms, current diagnostic methods, and therapies will help in the early detection and proper management of patients with these lesions and PDAC. This review aims to describe all these aspects of PCNs, specifically IPMNs, by describing the future perspectives.
Collapse
Affiliation(s)
- Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
4
|
Li QK, Hu Y, Chen L, Schnaubelt M, Cui Zhou D, Li Y, Lu RJH, Thiagarajan M, Hostetter G, Newton CJ, Jewell SD, Omenn G, Robles AI, Mesri M, Bathe OF, Zhang B, Ding L, Hruban RH, Chan DW, Zhang H. Neoplastic cell enrichment of tumor tissues using coring and laser microdissection for proteomic and genomic analyses of pancreatic ductal adenocarcinoma. Clin Proteomics 2022; 19:36. [PMID: 36266629 DOI: 10.1186/s12014-022-09373-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The identification of differentially expressed tumor-associated proteins and genomic alterations driving neoplasia is critical in the development of clinical assays to detect cancers and forms the foundation for understanding cancer biology. One of the challenges in the analysis of pancreatic ductal adenocarcinoma (PDAC) is the low neoplastic cellularity and heterogeneous composition of bulk tumors. To enrich neoplastic cells from bulk tumor tissue, coring, and laser microdissection (LMD) sampling techniques have been employed. In this study, we assessed the protein and KRAS mutation changes associated with samples obtained by these enrichment techniques and evaluated the fraction of neoplastic cells in PDAC for proteomic and genomic analyses. METHODS Three fresh frozen PDAC tumors and their tumor-matched normal adjacent tissues (NATs) were obtained from three sampling techniques using bulk, coring, and LMD; and analyzed by TMT-based quantitative proteomics. The protein profiles and characterizations of differentially expressed proteins in three sampling groups were determined. These three PDACs and samples of five additional PDACs obtained by the same three sampling techniques were also subjected to genomic analysis to characterize KRAS mutations. RESULTS The neoplastic cellularity of eight PDACs ranged from less than 10% to over 80% based on morphological review. Distinctive proteomic patterns and abundances of certain tumor-associated proteins were revealed when comparing the tumors and NATs by different sampling techniques. Coring and bulk tissues had comparable proteome profiles, while LMD samples had the most distinct proteome composition compared to bulk tissues. Further genomic analysis of bulk, cored, or LMD samples demonstrated that KRAS mutations were significantly enriched in LMD samples while coring was less effective in enriching for KRAS mutations when bulk tissues contained a relatively low neoplastic cellularity. CONCLUSIONS In addition to bulk tissues, samples from LMD and coring techniques can be used for proteogenomic studies. The greatest enrichment of neoplastic cellularity is obtained with the LMD technique.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA. .,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, USA.
| | - Yingwei Hu
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA
| | - Lijun Chen
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA
| | - Daniel Cui Zhou
- Department of Oncology, Washington University at Saint Louis, St Louis, MO, USA
| | - Yize Li
- Department of Oncology, Washington University at Saint Louis, St Louis, MO, USA
| | - Rita Jui-Hsien Lu
- Department of Oncology, Washington University at Saint Louis, St Louis, MO, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | - Gil Omenn
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD, USA
| | - Oliver F Bathe
- Department of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Li Ding
- Department of Oncology, Washington University at Saint Louis, St Louis, MO, USA
| | - Ralph H Hruban
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA.,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, USA
| | - Daniel W Chan
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA.,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, the Johns Hopkins University, 400 N Broadway, Smith Bldg Rm 4011, Baltimore, MD, 21231, USA. .,Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD, USA.
| |
Collapse
|
5
|
Pavlidis ET, Sapalidis KG, Pavlidis TE. Modern aspects of the management of pancreatic intraductal papillary mucinous neoplasms: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:491-502. [PMID: 36588487 PMCID: PMC9926151 DOI: 10.47162/rjme.63.3.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/07/2022] [Indexed: 01/02/2023]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) account for approximately 35% of all cystic tumors in the pancreas and represent the largest subgroup. They are characterized by mucin production and intraductal papillary epithelium growth. IPMNs range from benign to malignant lesions. Biomarkers combined with 18F-Fluorodeoxyglucose-positron emission tomography (18FDG-PET) is the best diagnostic tool. The risk of malignant transformation for main-duct IPMNs is between 34-68% and for low-risk branch-duct (BD)-IPMNs it is 1.1%. Monitoring is crucial for determining the optimal time of surgical excision. Novel artificial intelligence combining clinical, tumor biomarkers, imaging and molecular genomics plays a determinant role in the evaluation of such lesions. The first diagnostic tool is multidetector helical computed tomography (MDHCT) or up-to-date magnetic resonance imaging (MRI). MRI detects malignancy by enhancing mural nodules ≥3 mm. Novel endosonographic interventional techniques have been added to the diagnostic armamentarium. Pancreatoscopy is feasible and effective but challenging for evaluating the diagnosis, invasiveness, and extent of IPMNs. Its findings may change the surgical approach. Pancreatic juice and duodenal fluid have been used recently for molecular biological analysis. The genes most frequently altered include Kirsten rat sarcoma viral proto-oncogene (KRAS), tumor protein p53 (TP53), cyclin-dependent kinase inhibitor 2A (CDKN2A), SMAD family member 4 (SMAD4), and guanine nucleotide-binding protein, alpha stimulating (GNAS). Despite the advances in diagnostic modalities, assessment of this premalignant lesion of pancreatic cancer, with its poor prognosis, is a challenging task. Pancreatectomy is the indicated approach for malignant or high-risk IPMNs with potent malignancy. Conservative management or enucleation for preserving the pancreas of low-risk BD-IPMNs is recommended, but long-term follow-up for recurrence is necessary. The management of IPMNs must be individualized based on preoperative high-risk stigmata and worrisome features.
Collapse
Affiliation(s)
- Efstathios T Pavlidis
- School of Medicine, Aristotle University of Thessaloniki, 2nd Propedeutic Department of Surgery, Hippokration Hospital, Thessaloniki, Greece;
| | | | | |
Collapse
|