1
|
Zhang L, Song Z, Mao X, Yang Y, Hou B, Chen Y, Hao Z. The SIRT6 allosteric activator MDL-800 suppresses calcium oxalate nephrocalcinosis by alleviating inflammatory and renal damage. Int Immunopharmacol 2025; 146:113864. [PMID: 39706044 DOI: 10.1016/j.intimp.2024.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Kidney stones consist largely of calcium oxalate (CaOx), and induce inflammation and damage to renal tubular epithelial (RTE) cells, leading to CaOx nephrocalcinosis. Sirtuin 6 (SIRT6), a sirtuin family member, is an NAD-dependent deacetylase that has been associated with cell damage and inflammation in various diseases. This study evaluated the efficacy of the novel SIRT6 allosteric agonist MDL-800 in treating CaOx nephrocalcinosis. The data revealed that MDL-800 preconditioning alleviated CaOx crystal-mediated damage in RTE cells by suppressing inflammation, as shown in both cell and animal studies. Furthermore, MDL-800 enhanced SIRT6 deacetylation at H3K9AC. However, MDL-800 pretreatment of SIRT6-knockdown (KD) RTE cells did not protect against CaOx crystal-induced cell damage and inflammation. Mechanistically, MDL-800 markedly downregulated the expression of IL-1β, TNF-α, MCP-1, and IL-6 in mouse kidneys via the TRL4/NF-κB pathway. These data indicated that MDL-800 reduces inflammation and inhibits the TLR4/NF-κB axis by increasing SIRT6-modulated histone deacetylation, thus inhibiting and protecting against inflammatory responses. In summary, MDL-800 modulation of SIRT6-mediated inflammation and renal damage represents a novel strategy for treating CaOx-mediated nephrocalcinosis.
Collapse
Affiliation(s)
- Lvwen Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Zhenyu Song
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Xike Mao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Yuehan Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Bingbing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
He Y, Peng E, Ba X, Wu J, Deng W, Huang Q, Tong Y, Shang H, Zhong Z, Liu X, Zhang Y, Ye T, Yang X, Wang K, Xie Y, Jiang K, Xia D, Chen Z, Tang K. ROS Responsive Cerium Oxide Biomimetic Nanoparticles Alleviates Calcium Oxalate Crystals Induced Kidney Injury via Suppressing Oxidative Stress and M1 Macrophage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405417. [PMID: 39629501 DOI: 10.1002/smll.202405417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Indexed: 01/23/2025]
Abstract
Emerging studies have demonstrated that M1 macrophage polarization and oxidative stress play important roles in calcium oxalate (CaOx) induced kidney injury, which leads to increased crystals deposition. ROS scavenging nanozymes and kidney-targeted nanoparticles for antioxidant drugs delivery have emerged as an arisen methodology for kidney injury therapy. However, cell membrane biomimetic-modified nanozymes as anti-inflammatory drug delivery systems for the treatment of kidney injury is rarely reported. Herein, the ROS responsive red blood cell-membrane-coated resatorvid-loaded cerium oxide nanoparticles (RBCM@CeO2/TAK-242) are constructed to suppress CaOx induced kidney injury and crystals deposition. In vitro, RBCM@CeO2/TAK-242 shows effective internalization by renal tubular epithelial cells, along with demonstrated antioxidative, anti-inflammatory, and macrophage reprogramming effects. Glyoxalate(Gly)-induced renal CaOx crystals mouse model is established, RBCM@CeO2/TAK-242 shows excellent injured kidney targeting and biosafety, and could effectively suppress CaOx induced kidney injury and crystals deposition. RBCM@CeO2/TAK-242 has a dual protective effect by both inhibiting oxidative stress and modulating macrophage polarization in vivo. In addition, RNA seq analysis reveals that RBCM@CeO2/TAK-242 protects against CaOx induced kidney injury via suppressing the TLR4/NF-κB pathway. This study provides an innovative strategy for RBCM@CeO2/TAK-242 as injured kidney targeting and dual protective effects for the treatment of CaOx induced kidney injury and crystals deposition.
Collapse
Affiliation(s)
- Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanlong Zhang
- Medical College of Guizhou University, Guiyang, 550025, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang, 571300, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang, 571300, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
3
|
Zhang JN, Gong R, Lu BT, Wang YQ, Chong Y, Wang XT, Lai QQ, Cao YH, Zhao MY. Integrated Analysis of Gene Expression and Immune Cell Infiltration Reveals Dysregulated Genes and miRNAs in Acute Kidney Injury. Mol Biotechnol 2024:10.1007/s12033-024-01344-x. [PMID: 39661223 DOI: 10.1007/s12033-024-01344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Acute Kidney Injury (AKI) is a multifaceted condition characterised by rapid deterioration of renal function, often precipitated by diverse etiologies. A comprehensive understanding of the molecular underpinnings of AKI is pivotal for identifying potential diagnostic markers and therapeutic targets. This study utilised bioinformatics to elucidate gene expression and immune infiltration in AKI. Publicly available mRNA and miRNA datasets were harnessed to discern differentially expressed genes (DEGs) and miRNAs in AKI. The CIBERSORT algorithm was employed to quantify immune cell infiltration in AKI samples. Functional enrichment analyses were conducted to unravel the implicated biological processes. Furthermore, the expression of identified genes and miRNAs was validated by quantitative real-time PCR in an AKI model. Our study revealed significant dysregulation of three genes (Aspn, Clec2h, Tmigd1) and two miRNAs (mmu-miR-21a-3p, mmu-miR-223-3p) in AKI, each with p < 0.0001. These molecular markers are implicated in immune responses, tissue remodelling, and inflammation. We observed notable disturbances in specific immune cells, including activated and immature dendritic cells, M1 macrophages, and subsets of T cells (Treg, Th1, Th17). These alterations correlated significantly with AKI pathology, with dendritic cells and M1 macrophages showing p < 0.01, and T cell subsets demonstrating p < 0.05. These results highlight the intricate involvement of the immune system in AKI and indicate significant enrichment of pathways related to immune response, inflammation, and tissue remodelling, pointing to their pivotal roles in AKI pathophysiology. Our study underscored the significance of immune cell infiltration and dysregulated gene and miRNA expression in AKI. The identified genes (Clec2h, Aspn, and Tmigd1) and miRNAs (mmu-miR-21a-3p and mmu-miR-223-3p) offer potential diagnostic markers and therapeutic avenues for AKI. Subsequent investigations targeting these genes and miRNAs, along with the elucidated pathways, may augment the clinical management and outcomes for AKI patients.
Collapse
Affiliation(s)
- Jian-Nan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Rui Gong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430022, China
| | - Bai-Tao Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Yi-Qi Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Yang Chong
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Xin-Tong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Qi-Qi Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Yan-Hui Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China.
| | - Ming-Yan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
4
|
Wang Q, Yang Z, Chen X, Yang Y, Jiang K. Noncoding RNA, friend or foe for nephrolithiasis? Front Cell Dev Biol 2024; 12:1457319. [PMID: 39633711 PMCID: PMC11614778 DOI: 10.3389/fcell.2024.1457319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Nephrolithiasis is one of the most common diseases in urology, characterized by notable incidence and recurrence rates, leading to significant morbidity and financial burden. Despite its prevalence, the precise mechanisms underlying stone formation remain incompletely understood, thus hindering significant advancements in kidney stone management over the past three decades. Investigating the pivotal biological molecules that govern stone formation has consistently been a challenging and high-priority task. A significant portion of mammalian genomes are transcribed into noncoding RNAs (ncRNAs), which have the ability to modulate gene expression and disease progression. They are thus emerging as a novel target class for diagnostics and pharmaceutical exploration. In recent years, the role of ncRNAs in stone formation has attracted burgeoning attention. They have been found to influence stone formation by regulating ion transportation, oxidative stress injury, inflammation, osteoblastic transformation, autophagy, and pyroptosis. These findings contributes new perspectives on the pathogenesis of nephrolithiasis. To enhance our understanding of the diagnostic and therapeutic potential of nephrolithiasis-associated ncRNAs, we summarized the expression profiles, biological functions, and clinical significance of these ncRNAs in the current review.
Collapse
Affiliation(s)
- Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Ji Y, Hua H, Jia Z, Zhang A, Ding G. Therapy Targeted to the NLRP3 Inflammasome in Chronic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:369-383. [PMID: 39430292 PMCID: PMC11488838 DOI: 10.1159/000539496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/07/2024] [Indexed: 10/22/2024]
Abstract
Background The NLRP3 inflammasome is a cytoplasmic polymeric protein complex composed of the cytoplasmic sensor NLRP3, the apoptosis-related spot-like protein ASC, and the inflammatory protease caspase-1. NLRP3 activates and releases IL-1β through classical pathways, and IL-18 mediates inflammation and activates gasdermin-D protein to induce cellular pyroptosis. Numerous studies have also emphasized the non-classical pathway activated by the NLRP3 inflammasome in chronic kidney disease (CKD) and the inflammasome-independent function of NLRP3. Summary The NLRP3-targeting inflammasome and its associated pathways have thus been widely studied in models of CKD treatment, but no drug that targets NLRP3 has thus far been approved for the treatment of CKD. Key Messages We herein reviewed the current interventional methods for targeting the NLRP3 inflammasome in various CKD models, analyzed their underlying mechanisms of action, classified and compared them, and discussed the advantages and follow-up directions of various interventional methods. This review therefore provides novel ideas and a reference for the development of targeted NLRP3-inflammasome therapy in CKD.
Collapse
Affiliation(s)
- Yong Ji
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Hua
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Zhang K, Fang X, Zhang Y, Zhang Y, Chao M. Transcriptional activation of PINK1 by MyoD1 mediates mitochondrial homeostasis to induce renal calcification in pediatric nephrolithiasis. Cell Death Discov 2024; 10:397. [PMID: 39242558 PMCID: PMC11379875 DOI: 10.1038/s41420-024-02117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
This study aims to uncover the molecular mechanisms underlying pediatric kidney stone formation induced by renal calcium deposition by utilizing high-throughput sequencing data to reveal the regulation of PINK1 by MyoD1. We performed transcriptome sequencing on peripheral blood samples from healthy children and children with kidney stones to obtain differentially expressed genes (DEGs). Genes related to mitochondrial oxidative stress were obtained from the Genecards website and intersected with DEGs to obtain candidate target genes. Additionally, we conducted protein-protein interaction (PPI) analysis using the STRING database to identify core genes involved in pediatric kidney stone disease (KSD) and predicted their transcription factors using the hTFtarget database. We assessed the impact of MyoD1 on the activity of the PINK1 promoter using dual-luciferase reporter assays and investigated the enrichment of MyoD1 on the PINK1 promoter through chromatin immunoprecipitation (ChIP) experiments. To validate our hypothesis, we selected HK-2 cells and established an in vitro kidney stone model induced by calcium oxalate monohydrate (COM). We evaluated the expression levels of various genes, cell viability, volume of adherent crystals in each group, as well as mitochondrial oxidative stress in cells by measuring mitochondrial membrane potential (Δψm), superoxide dismutase (SOD) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) content. Mitochondrial autophagy was assessed using mtDNA fluorescence staining and Western blot analysis of PINK1-related proteins. Apoptosis-related proteins were evaluated using Western blot analysis, and cell apoptosis was measured using flow cytometry. Furthermore, we developed a rat model of KSD and assessed the expression levels of various genes, as well as the pathologic changes in rat renal tissues using H&E and von Kossa staining, transmission electron microscopy (TEM), and the expression of creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) to evaluate the mitochondrial oxidative stress in vivo (through measurement of Δψm, SOD activity, ROS, and MDA content). Mitochondrial autophagy was evaluated by Western blot analysis of PINK1-associated proteins. Apoptosis-related proteins were detected using Western blot analysis, and cellular apoptosis was examined using cell flow cytometry and TUNEL staining. Bioinformatics analysis revealed that the PINK1 gene is upregulated and vital in pediatric kidney stone patients. Our in vitro and in vivo experiments demonstrated that silencing PINK1 could inhibit kidney stone formation by suppressing mitochondrial oxidative stress both in vitro and in vivo. We identified MyoD1 as an upstream transcription factor of PINK1 that contributes to the occurrence of pediatric kidney stones through the activation of PINK1. Our in vivo and in vitro experiments collectively confirmed that silencing MyoD1 could inhibit mitochondrial oxidative stress, mitochondrial autophagy, and cellular apoptosis in a rat model of kidney stones by downregulating PINK1 expression, consequently suppressing the formation of kidney stones. In this study, we discovered that MyoD1 may promote kidney stone formation and development in pediatric patients by transcriptionally activating PINK1 to induce mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Kaiping Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Xiang Fang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Ye Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Yin Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Min Chao
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China.
| |
Collapse
|
7
|
Ye J, Tang X, Li M, Liao Y, Zeng Y, Tang F, Qiu E. MicroRNA-223 alleviates inflammatory response in renal ischemia-reperfusion injury by targeting NLRP3. Kaohsiung J Med Sci 2024; 40:789-800. [PMID: 39252576 DOI: 10.1002/kjm2.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024] Open
Abstract
We investigated the potential correlation between miR-223 and NAcHT, LRR, and PYd domain-containing protein 3 (NLRP3) in the context of renal ischemia-reperfusion injury (RIRI), which is a leading cause of acute renal failure with significant mortality rates. Additionally, miR-223 has been implicated in renal inflammation, further highlighting its relevance to this study. C57BL/6 male mice were used as RIRI models. After successful modeling, pathological examinations and serum creatinine and miR-223 levels were tested. Pro-inflammatory cytokine (IL-1β, IL-6, IL-8, NLPR3, TLR4) expression was detected in mice by western blot (kidney tissue) and enzyme-linked immunosorbent assay (serum). HK-2 cells were used for in vitro experiments. A hypoxia/reoxygenation (H/R) model was used, and miR-223 and pro-inflammatory cytokine levels were detected using PCR and western blot assays, respectively. A dual-luciferase reporter assay was conducted to confirm the binding of miR-223 to NLPR3. Next, NLRP3 was knocked down to determine whether the anti-inflammatory function of miR-223 is dependent on NLRP3. MiR-223 expression was lower in RIRI mice than in the sham operation group. The level of miR-223 negatively correlated with serum creatinine levels and the severity of tubule injury. Increased proinflammatory cytokine levels in RIRI mice were observed. In vitro, miR-223 alleviated the inflammatory response in H/R treated cells by inhibiting proinflammatory cytokines. Dual-luciferase reporter and western blot assays confirmed the binding of miR-223 to NLRP3. NLRP3 knockdown reversed the anti-inflammatory effects of miR-223 in HK-2 cells. MiR-223 plays an anti-inflammatory role in RIRI by targeting NLRP3 to repress pro-inflammatory factors.
Collapse
Affiliation(s)
- Jun Ye
- Trauma Center, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Xiaoli Tang
- Trauma Center, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Ming Li
- Trauma Center, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Yutian Liao
- Trauma Center, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Yiqian Zeng
- Trauma Center, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Furong Tang
- Department of Emergency, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Eryue Qiu
- Trauma Center, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
8
|
Aboismaiel MG, Amin MN, Eissa LA. Renoprotective effect of a novel combination of 6-gingerol and metformin in high-fat diet/streptozotocin-induced diabetic nephropathy in rats via targeting miRNA-146a, miRNA-223, TLR4/TRAF6/NLRP3 inflammasome pathway and HIF-1α. Biol Res 2024; 57:47. [PMID: 39033184 PMCID: PMC11265012 DOI: 10.1186/s40659-024-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1β) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1β, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.
Collapse
Affiliation(s)
- Merna G Aboismaiel
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
9
|
Yang Q, Chen Q, Li S, Luo J. Mesenchymal stem cells ameliorate inflammation and pyroptosis in diabetic cardiomyopathy via the miRNA-223-3p/NLRP3 pathway. Diabetol Metab Syndr 2024; 16:146. [PMID: 38956716 PMCID: PMC11221100 DOI: 10.1186/s13098-024-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) stands as the primary cause of heart failure and mortality among patients with diabetes. Nevertheless, conventional treatment approaches are limited in their ability to effectively prevent myocardial tissue damage itself. Mesenchymal stem cell (MSC) therapy exhibits immense potential for treating DCM; however, the precise mechanisms involved in regulating inflammatory responses and pyroptosis processes, an emerging form of cellular death, within myocardial cells remain elusive. Hence, it is imperative to further elucidate the precise underlying mechanisms to facilitate the clinical implementation of MSC therapy. METHODS In vivo, we established a DCM mouse model by administering streptozotocin and fed the mice a high-glucose and high-fat diet, followed by MSC therapy. Cardiac function and myocardial injury were evaluated through echocardiography and histological analysis. Furthermore, the levels of inflammation and pyroptosis were assessed using ELISA, Western blotting, and qRT-PCR. In vitro experiments involved inducing H9C2 myocardial cell damage with high glucose treatment, followed by coculture with MSCs to investigate their role in modulating inflammation and pyroptosis mechanisms. RESULTS MSCs can maintain cardiac function and alleviate myocardial injury in mice with DCM. Moreover, they effectively suppress the activation of NLRP3 and reduce the release of inflammatory factors (such as IL-1β and ROS), thereby further downregulating the expression of pyroptosis-related proteins including NLRP3, Caspase-1, and GSDMD. Additionally, we experimentally validated that MSCs exert their therapeutic effects by promoting the expression of miR-223-3p in cardiac myocytes; however, this effect can be reversed by an miR-223-3p inhibitor. CONCLUSION MSCs effectively mitigate the release of inflammatory factors and cell lysis caused by pyroptosis through the regulation of the miR-223-3p/NLRP3 pathway, thereby safeguarding cardiomyocytes against damage in DCM. This mechanism establishes a novel theoretical foundation for the clinical treatment of cardiac conditions utilizing MSCs.
Collapse
Affiliation(s)
- Qu Yang
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qi Chen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Sihui Li
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
10
|
Fan Q, Li R, Wei H, Xue W, Li X, Xia Z, Zhao L, Qiu Y, Cui D. Research Progress of Pyroptosis in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:7130. [PMID: 39000237 PMCID: PMC11241146 DOI: 10.3390/ijms25137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. Diabetic Kidney Disease (DKD) is caused by the complication of diabetes in the kidney, and the most important kidney's function, Glomerular Filtration Rate (GFR), happens to drop to less than 90% of its usual and even lead to kidney failure in severe cases. The persistent inflammatory state induced by high blood glucose implies the key pathology of DKD, and growing evidence shows that pyroptosis serves as a significant contributor to this chronic immune-mediated inflammatory disorder. Currently, the expanded discovery of GSDMs, pyroptosis, and its association with innate immunity has been more attractive, and overwhelming research is needed to sort out the implication of pyroptosis in DKD pathology. In this review, we comb both classical studies and newly founds on pyroptosis, prick off the novel awakening of pyroptosis in DKD, and center on the significance of pyroptosis in DKD treatment, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Qingqing Fan
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Rongxuan Li
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Huiting Wei
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Weiyue Xue
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Xiang Li
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Ziyao Xia
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Le Zhao
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Ye Qiu
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha 410000, China
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| |
Collapse
|
11
|
Wang G, Mi J, Bai J, He Q, Li X, Wang Z. Non-Coding RNAs in Kidney Stones. Biomolecules 2024; 14:213. [PMID: 38397450 PMCID: PMC10886984 DOI: 10.3390/biom14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Nephrolithiasis is a major public health concern associated with high morbidity and recurrence. Despite decades of research, the pathogenesis of nephrolithiasis remains incompletely understood, and effective prevention is lacking. An increasing body of evidence suggests that non-coding RNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a role in stone formation and stone-related kidney injury. MiRNAs have been studied quite extensively in nephrolithiasis, and a plethora of specific miRNAs have been implicated in the pathogenesis of nephrolithiasis, involving remarkable changes in calcium metabolism, oxalate metabolism, oxidative stress, cell-crystal adhesion, cellular autophagy, apoptosis, and macrophage (Mp) polarization and metabolism. Emerging evidence suggests a potential for miRNAs as novel diagnostic biomarkers of nephrolithiasis. LncRNAs act as competing endogenous RNAs (ceRNAs) to bind miRNAs, thereby modulating mRNA expression to participate in the regulation of physiological mechanisms in kidney stones. Small interfering RNAs (siRNAs) may provide a novel approach to kidney stone prevention and treatment by treating related metabolic conditions that cause kidney stones. Further investigation into these non-coding RNAs will generate novel insights into the mechanisms of renal stone formation and stone-related renal injury and might lead to new strategies for diagnosing and treating this disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoran Li
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; (G.W.); (J.M.); (J.B.); (Q.H.)
| | - Zhiping Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; (G.W.); (J.M.); (J.B.); (Q.H.)
| |
Collapse
|
12
|
Han M, Zhang D, Ji J, Zhang J, Qin M. Downregulating miR-184 relieves calcium oxalate crystal-mediated renal cell damage via activating the Rap1 signaling pathway. Aging (Albany NY) 2023; 15:14749-14763. [PMID: 38154105 PMCID: PMC10781483 DOI: 10.18632/aging.205286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Renal calculi are a very prevalent disease with a high incidence. Calcium oxalate (CaOx) is a primary constituent of kidney stones. Our paper probes the regulatory function and mechanism of miR-184 in CaOx-mediated renal cell damage. METHODS CaOx was used to treat HK2 cells and human podocytes (HPCs) to simulate kidney cell damage. The qRT-PCR technique checked the profiles of miR-184 and IGF1R. The examination of cell proliferation was conducted employing CCK8. TUNEL staining was used to monitor cell apoptosis. Western blot analysis was used to determine the protein profiles of apoptosis-concerned related proteins (including Mcl1, Bcl-XL, and Caspase-3), the NF-κB, Nrf2/HO-1, and Rap1 signaling pathways. ELISA confirmed the levels of the inflammatory factors IL-6, TNF-α, MCP1, and ICAM1. The targeting relationship between miR-184 and IGF1R was validated by dual luciferase assay and RNA immunoprecipitation assay. RESULTS Glyoxylate-induced rat kidney stones model and HK2 and HPC cells treated with CaOx demonstrated an increase in the miR-184 profile. Inhibiting miR-184 relieved CaOx-mediated renal cell inflammation, apoptosis and oxidative stress and activated the Rap1 pathway. IGF1R was targeted by miR-184. IGF1R activation by IGF1 attenuated the effects of miR-184 on renal cell damage, and Hippo pathway suppression reversed the inhibitory effect of miR-184 knockdown on renal cell impairment. CONCLUSIONS miR-184 downregulation activates the Rap1 signaling pathway to ameliorate renal cell damage mediated by CaOx.
Collapse
Affiliation(s)
- Mei Han
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Donghong Zhang
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Junwei Ji
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Junli Zhang
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mingyi Qin
- Department of Nursing, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
13
|
Chen Y, Yang S, Kong H, Wang Q, Chen S, Wang X, Chen L, Qi S. Oxalate‑induced renal pyroptotic injury and crystal formation mediated by NLRP3‑GSDMD signaling in vitro and in vivo. Mol Med Rep 2023; 28:209. [PMID: 37732544 PMCID: PMC10540023 DOI: 10.3892/mmr.2023.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Calcium oxalate kidney stone has become an urgent issue due to its high incidence and recurrence rate. Thus, it is necessary to explore for mechanisms of calcium oxalate stones formation. Previous studies demonstrated that oxalate crystals could induce the activation of nucleotide‑binding domain and leucine‑rich repeat‑containing family pyrin domain‑containing 3 (NLRP3) inflammasome and change the renal tubular epithelium adhesion. However, the type and molecular mechanism of NLRP3 inflammasome‑mediated calcium oxalate stones formation still need to be further investigated. In the present study, it was confirmed that the NLRP3‑gasdermin D (GSDMD) signaling was involved in oxalate‑induced cell injury in vitro and in vivo. Inhibition of reactive oxygen species production could effectively prevent the NLRP3 inflammasome formation in oxalate‑treated HK‑2 cells. NLRP3 gene silence could inhibit the DNA damage and cellular membrane injury of HK‑2 cells treated with oxalate. The ultrastructural changes of several organelles and particular structures, similar to typical cell pyroptosis, were observed in oxalate‑stimulated HK‑2 cells. NLRP3 gene silence could antagonize the oxalate‑induced injury and ultrastructure changes. Additionally, NSA (GSDMD inhibitor) could prevent the oxalate‑induced injury of membrane integrity in HK‑2 cells. Moreover, oxalate crystals were significantly decreased in GSDMD‑/‑ mice compared with wild‑type mice with glyoxylic acid. Together, NLRP3‑GSDMD pathway was involved in the oxalate‑induced pyroptotic injury in HK‑2 cells. GSDMD and its cleavage form GSDMD‑N played an important role in the oxalate‑induced renal cell injury and oxalate calcium crystals formation in vitro and in vivo. This provided a new target for prevention and treatment of oxalate nephropathy and oxalate calcium stones.
Collapse
Affiliation(s)
- Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, P.R. China
| | - Shushuai Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, P.R. China
| | - Hailong Kong
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, P.R. China
| | - Qi Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, P.R. China
| | - Shiqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Xingyu Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, P.R. China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, P.R. China
| |
Collapse
|
14
|
Hao W, Zhang H, Hong P, Zhang X, Zhao X, Ma L, Qiu X, Ping H, Lu D, Yin Y. Critical role of VHL/BICD2/STAT1 axis in crystal-associated kidney disease. Cell Death Dis 2023; 14:680. [PMID: 37833251 PMCID: PMC10575931 DOI: 10.1038/s41419-023-06185-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Nephrolithiasis is highly prevalent and associated with the increased risk of kidney cancer. The tumor suppressor von Hippel-Lindau (VHL) is critical for renal cancer development, however, its role in kidney stone disease has not been fully elucidated until now. Here we reported VHL expression was upregulated in renal epithelial cells upon exposure to crystal. Utilizing Vhl+/mu mouse model, depletion of VHL exacerbated kidney inflammatory injury during nephrolithiasis. Conversely, overexpression of VHL limited crystal-induced lipid peroxidation and ferroptosis in a BICD2-depdendent manner. Mechanistically, VHL interacted with the cargo adaptor BICD2 and promoted itsd K48-linked poly-ubiquitination, consequently resulting in the proteasomal degradation of BICD2. Through promoting STAT1 nuclear translocation, BICD2 facilitated IFNγ signaling transduction and enhanced IFNγ-mediated suppression of cystine/glutamate antiporter system Xc-, eventually increasing cell sensitivity to ferroptosis. Moreover, we found that the BRAF inhibitor impaired the association of VHL with BICD2 through triggering BICD2 phosphorylation, ultimately causing severe ferroptosis and nephrotoxicity. Collectively, our results uncover the important role of VHL/BICD2/STAT1 axis in crystal kidney injury and provide a potential therapeutic target for treatment and prevention of renal inflammation and drug-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wenyan Hao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China
| | - Hongxian Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Peng Hong
- Department of Urology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Xin Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing Tongren Hospital, Beijing, 100730, PR China.
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
15
|
Xu Z, Yao X, Duan C, Liu H, Xu H. Metabolic changes in kidney stone disease. Front Immunol 2023; 14:1142207. [PMID: 37228601 PMCID: PMC10203412 DOI: 10.3389/fimmu.2023.1142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Kidney stone disease (KSD) is one of the earliest medical diseases known, but the mechanism of its formation and metabolic changes remain unclear. The formation of kidney stones is a extensive and complicated process, which is regulated by metabolic changes in various substances. In this manuscript, we summarized the progress of research on metabolic changes in kidney stone disease and discuss the valuable role of some new potential targets. We reviewed the influence of metabolism of some common substances on stone formation, such as the regulation of oxalate, the release of reactive oxygen species (ROS), macrophage polarization, the levels of hormones, and the alternation of other substances. New insights into changes in substance metabolism changes in kidney stone disease, as well as emerging research techniques, will provide new directions in the treatment of stones. Reviewing the great progress that has been made in this field will help to improve the understanding by urologists, nephrologists, and health care providers of the metabolic changes in kidney stone disease, and contribute to explore new metabolic targets for clinical therapy.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, San Francisco, CA, United States
| | - Hua Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Giannuzzi F, Maiullari S, Gesualdo L, Sallustio F. The Mission of Long Non-Coding RNAs in Human Adult Renal Stem/Progenitor Cells and Renal Diseases. Cells 2023; 12:cells12081115. [PMID: 37190024 DOI: 10.3390/cells12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and key regulators of gene expression at both the transcriptional and post-transcriptional levels in different cellular contexts and biological processes. Understanding the potential mechanisms of action of lncRNAs and their role in disease onset and development may open up new possibilities for therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis. However, little is known about lncRNAs that are expressed in the healthy kidney and that are involved in renal cell homeostasis and development, and even less is known about lncRNAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology, focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities of α-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore modulating the renal aging.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
17
|
Zhang WJ, Li KY, Lan Y, Zeng HY, Chen SQ, Wang H. NLRP3 Inflammasome: A key contributor to the inflammation formation. Food Chem Toxicol 2023; 174:113683. [PMID: 36809826 DOI: 10.1016/j.fct.2023.113683] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Inflammation is an important part of the development of various organ diseases. The inflammasome, as an innate immune receptor, plays an important role in the formation of inflammation. Among various inflammasomes, the NLRP3 inflammasome is the most well studied. The NLRP3 inflammasome is composed of skeletal protein NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1. There are three types of activation pathways: (1) "classical" activation pathway; (2) "non-canonical" activation pathway; (3) "alternative" activation pathway. The activation of NLRP3 inflammasome is involved in many inflammatory diseases. A variety of factors (such as genetic factors, environmental factors, chemical factors, viral infection, etc.) have been proved to activate NLRP3 inflammasome and promote the inflammatory response of the lung, heart, liver, kidney and other organs in the body. Especially, the mechanism of NLRP3 inflammation and its related molecules in its associated diseases remains not to be summarized, namely they may promote or delay inflammatory diseases in different cells and tissues. This article reviews the structure and function of the NLRP3 inflammasome and its role in various inflammations, including inflammations caused by chemically toxic substances.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Ke-Yun Li
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Yi Lan
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Han-Yi Zeng
- Department of Genetics, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Shui-Qin Chen
- Department of Immunology, School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, PR China.
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, PR China.
| |
Collapse
|
18
|
Xie Z, Tang J, Chen Z, Wei L, Chen J, Liu Q. Human bone marrow mesenchymal stem cell-derived extracellular vesicles reduce inflammation and pyroptosis in acute kidney injury via miR-223-3p/HDAC2/SNRK. Inflamm Res 2023; 72:553-576. [PMID: 36640195 PMCID: PMC9840168 DOI: 10.1007/s00011-022-01653-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Bone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) have been demonstrated as a potential therapeutic agent in acute kidney injury (AKI). However, little is known about the mechanisms of action of BMSC-derived EVs in AKI. Based on this, our research was designed to investigate the mechanism behind BMSC-derived EVs controlling inflammation and pyroptosis during AKI. METHODS Peripheral blood from AKI patients was used for detection of microRNA (miR)-223-3p, HDAC2, and SNRK expression. An AKI rat model was established, and HK-2 cell injury was induced by lipopolysaccharide (LPS) to establish a cellular model. Co-culture with BMSC-derived EVs and/or gain- and loss-of-function assays were conducted in LPS-treated HK-2 to evaluate the functions of BMSCs-EVs, miR-223-3p, HDAC2, and SNRK. AKI rats were simultaneously injected with EVs and short hairpin RNAs targeting SNRK. The interactions among miR-223-3p, HDAC2, and SNRK were evaluated by RIP, ChIP, and dual-luciferase gene reporter assays. RESULTS Patients with AKI had low miR-223-3p and SNRK expression and high HDAC2 expression in peripheral blood. Mechanistically, miR-223-3p targeted HDAC2 to accelerate SNRK transcription. In LPS-treated HK-2 cells, BMSCs-EVs overexpressing miR-223-3p increased cell viability and diminished cell apoptosis, KIM-1, LDH, IL-1β, IL-6, TNF-α, NLRP3, ASC, cleaved caspase-1, and IL-18 expression, and GSDMD cleavage, which was nullified by HDAC2 overexpression or SNRK silencing. In AKI rats, BMSCs-EV-shuttled miR-223-3p reduced CRE and BUN levels, apoptosis, inflammation, and pyroptosis, which was abrogated by SNRK silencing. CONCLUSION Conclusively, BMSC-derived EV-encapsulated miR-223-3p mitigated AKI-induced inflammation and pyroptosis by targeting HDAC2 and promoting SNRK transcription.
Collapse
Affiliation(s)
- Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Jun Tang
- Department of Emergency, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lanji Wei
- Health Management Center, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Province Mawangdui Hospital, Changsha, 410016, Hunan, People's Republic of China
| | - Qin Liu
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Liu C, Ma K, Zhang Y, He X, Song L, Chi M, Han Z, Li G, Zhang Q, Liu C. Kidney diseases and long non-coding RNAs in the limelight. Front Physiol 2022; 13:932693. [PMID: 36299256 PMCID: PMC9589442 DOI: 10.3389/fphys.2022.932693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The most extensively and well-investigated sequences in the human genome are protein-coding genes, while large numbers of non-coding sequences exist in the human body and are even more diverse with more potential roles than coding sequences. With the unveiling of non-coding RNA research, long-stranded non-coding RNAs (lncRNAs), a class of transcripts >200 nucleotides in length primarily expressed in the nucleus and rarely in the cytoplasm, have drawn our attention. LncRNAs are involved in various levels of gene regulatory processes, including but not limited to promoter activity, epigenetics, translation and transcription efficiency, and intracellular transport. They are also dysregulated in various pathophysiological processes, especially in diseases and cancers involving genomic imprinting. In recent years, numerous studies have linked lncRNAs to the pathophysiology of various kidney diseases. This review summarizes the molecular mechanisms involved in lncRNAs, their impact on kidney diseases, and associated complications, as well as the value of lncRNAs as emerging biomarkers for the prevention and prognosis of kidney diseases, suggesting their potential as new therapeutic tools.
Collapse
Affiliation(s)
- Chenxin Liu
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yunchao Zhang
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Linjiang Song
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| |
Collapse
|
20
|
Ming S, Tian J, Ma K, Pei C, Li L, Wang Z, Fang Z, Liu M, Dong H, Li W, Zeng J, Peng Y, Gao X. Oxalate-induced apoptosis through ERS-ROS-NF-κB signalling pathway in renal tubular epithelial cell. Mol Med 2022; 28:88. [PMID: 35922749 PMCID: PMC9347104 DOI: 10.1186/s10020-022-00494-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background Kidney stones are composed of approximately 70–80% calcium oxalate. However, the exact mechanism of formation of calcium oxalate kidney stones remains unclear. In this study, we investigated the roles of endoplasmic reticulum stress (ERS), reactive oxygen species (ROS), and the NF-κB signalling pathway in the pathogenesis of oxalate-induced renal tubular epithelial cell injury and its possible molecular mechanisms. Methods We established a model to evaluate the formation of kidney stones by intraperitoneal injection of glyoxylic acid solution into mice and assessed cell morphology, apoptosis, and the expression levels of ERS, ROS, and NF-κB signalling pathway-related proteins in mouse renal tissues. Next, we treated HK-2 cells with potassium oxalate to construct a renal tubular epithelial cell injury model. We detected the changes in autophagy, apoptosis, and mitochondrial membrane potential and investigated the ultrastructure of the cells by transmission electron microscopy. Western blotting revealed the expression levels of apoptosis and autophagy proteins; mitochondrial structural and functional proteins; and ERS, ROS, and NF-κB (p65) proteins. Lastly, we studied the downregulation of NF-κB activity in HK-2 cells by lentivirus interference and confirmed the interaction between the NF-κB signalling and ERS/ROS pathways. Results We observed swelling of renal tissues, increased apoptosis of renal tubular epithelial cells, and activation of the ERS, ROS, and NF-κB signalling pathways in the oxalate group. We found that oxalate induced autophagy, apoptosis, and mitochondrial damage in HK-2 cells and activated the ERS/ROS/NF-κB pathways. Interestingly, when the NF-κB signalling pathway was inhibited, the ERS/ROS pathway was also inhibited. Conclusion Oxalate induces HK-2 cell injury through the interaction between the NF-κB signalling and ERS/ROS pathways.
Collapse
Affiliation(s)
- Shaoxiong Ming
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Jia Tian
- Department of Human Sperm Bank of Ningxia, General Hospital of Ningxia Medical University, Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Ke Ma
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Chengbin Pei
- Department of Human Sperm Bank of Ningxia, General Hospital of Ningxia Medical University, Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Ling Li
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zeyu Wang
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Ziyu Fang
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Min Liu
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Hao Dong
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Weijian Li
- Department of Urology, Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), B24, Yinquan Road, XinchengDistrict, Qingyuan, 511518, Guangdong Province, China
| | - Jianwen Zeng
- Department of Urology, Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), B24, Yinquan Road, XinchengDistrict, Qingyuan, 511518, Guangdong Province, China
| | - Yonghan Peng
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
21
|
Sun Y, Liu J, Wen J, Huang D, Zhou Q, Zhang X, Ding X, Chen X. Overexpression of long noncoding RNA LINC00638 inhibits inflammation and oxidative stress in rheumatoid arthritis fibroblast-like synoviocytes by regulating the Nrf2/HO-1 pathway. Immun Inflamm Dis 2022; 10:e663. [PMID: 35759235 PMCID: PMC9208282 DOI: 10.1002/iid3.663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/27/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Abnormal expression of long noncoding RNAs (lncRNAs) is involved in several autoimmune diseases including rheumatoid arthritis (RA). In this study, we intended to explore the expression of lncRNA LINC00638 in RA and its potential mechanism of action related to inflammation and oxidative stress. METHODS The level of LINC00638 in the peripheral blood mononuclear cells (PBMCs) obtained from 45 RA patients and 30 normal controls was analyzed and its correlation with clinical indicators was investigated. In vitro, we used tumor necrosis factor-α to stimulate fibroblast-like synoviocytes (FLS) of RA patients for cell based experiments. Subsequently, the overexpressed plasmid and small interfering RNA of LINC00638 were designed. Furthermore, we further analyzed the potential effects of LINC00638 on the proliferation and migration of RA-FLS and the nuclear factor erythrocyte derived 2 related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. RESULTS LINC00638 expression was found to be significantly decreased in PBMCs of RA patients, and it was negatively correlated with erythrocyte sedimentation rate, interleukin (IL)-17, reactive oxygen species (ROS), and disease activity scores for 28 joints (DAS28). Overexpression of LINC00638 activated the Nrf2/HO-1 pathway, markedly decreased the expressions of IL-6, IL-17, IL-23, ROS, as well as malondialdehyde, increased the total antioxidant capacity, and attenuated the proliferation and migration of RA-FLS, while silencing of LINC00638 reversed these manifestations. CONCLUSIONS LINC00638 was found to be expressed at low levels in RA patients and was associated with immune inflammation, oxidative stress, and disease activity. Overexpression of LINC00638 can reduce the proliferation as well as migration of RA-FLS, and activate the Nrf2/HO-1 pathway to inhibit the inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yanqiu Sun
- Graduate SchoolAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Jian Liu
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
- Institute of RheumatologyAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Jianting Wen
- Graduate SchoolAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Dan Huang
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
- Institute of RheumatologyAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Qin Zhou
- Graduate SchoolAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Xianheng Zhang
- Graduate SchoolAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Xiang Ding
- Graduate SchoolAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| | - Xiaolu Chen
- Graduate SchoolAnhui University of Traditional Chinese MedicineHefeiAnhuiChina
- Department of RheumatologyThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiAnhuiChina
| |
Collapse
|
22
|
Cold Stress Induced Liver Injury of Mice through Activated NLRP3/Caspase-1/GSDMD Pyroptosis Signaling Pathway. Biomolecules 2022; 12:biom12070927. [PMID: 35883482 PMCID: PMC9312970 DOI: 10.3390/biom12070927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The body needs to generate heat to ensure basic life activities when exposed to cold temperatures. The liver, as the largest glycogen storage organ in the body and main heat-producing organ at rest, may play a role in chronic cold exposure. Recent studies suggested that pyroptosis plays a crucial role in liver diseases. However, the role of pyroptosis in cold stress-induced liver injury is not clear. Hence, in this study, we attempted to investigate the effects of chronic cold exposure on liver function, apoptosis, oxidative stress and inflammation in mice by establishing a mouse model of chronic cold exposure, and to investigate whether pyroptosis pathways are involved in the process of chronic cold exposure. In vivo, our results show that inflammatory cell infiltration and other pathological changes in liver cells and the activity of liver enzyme evidently increased in the serum and liver of cold-exposed mice, suggesting cold stress may result in liver injury. Remarkably, increased expression of heat shock protein 70 (HSP70) and HSP90 proteins proved the cold stress model is successfully constructed. Then, elevated levels of apoptosis, inflammation, oxidative stress and pyroptosis related proteins and mRNAs, such as cysteinyl aspartate specific proteinase-3 (Caspase-3), inducible nitric oxide synthase (iNOS), nuclear factor erythroid2-related factor 2 (Nrf2) and gasdermins D (GSDMD), confirmed that cold exposure activated apoptosis, oxidative stress and pyroptosis, and released inflammation cytokines. Meanwhile, in vitro, we got similar results as in vivo. Further, adding an NLR family pyrin domain containing 3 (NLRP3) inhibitors found that suppression expression of NLRP3 results in the essential proteins of pyroptosis and antioxidant evidently reduced, and adding GSDMD inhibitor found that suppression expression of GSDMD accompanies with the level of Nrf2 and heme oxygenase-1 (HO-1) obviously reduced. In summary, these findings provide a new understanding of the underlying mechanisms of the cold stress response, which can inform the development of new strategies to combat the effects of hypothermia.
Collapse
|
23
|
Gu Y, Shen Y, Chen W, He H, Ma Y, Mei X, Ju D, Liu H. Protective effects of interleukin-22 on oxalate-induced crystalline renal injury via alleviating mitochondrial damage and inflammatory response. Appl Microbiol Biotechnol 2022; 106:2637-2649. [PMID: 35294590 DOI: 10.1007/s00253-022-11876-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
Oxalate-induced crystalline kidney injury is one of the most common types of crystalline nephropathy. Unfortunately, there is no effective treatment to reduce the deposition of calcium oxalate crystals and alleviate kidney damage. Thus, proactive therapeutic is urgently needed to alleviate the suffering it causes to patient. Here, we investigated whether IL-22 exerted nephroprotective effects to sodium oxalate-mediated kidney damage and its potential mechanism. Crystalline kidney injury models were developed in vitro and in vivo that was often observed in clinic. We provided evidence that IL-22 could effectively decrease the accumulation of ROS and mitochondrial damage in cell and animal models and reduce the death of TECs. Moreover, IL-22 decreased the expression of the NLRP3 inflammasome and mature IL-1β in renal tissue induced by sodium oxalate. Further studies confirmed that IL-22 could play an anti-inflammatory role by reducing the levels of cytokines such as IL-1β, IL-18, and TNF-α in serum. In conclusion, our study confirmed that IL-22 has protective effects on sodium oxalate-induced crystalline kidney injury by reducing the production of ROS, protecting mitochondrial membrane potential, and inhibiting the inflammatory response. Therefore, IL-22 may play a potential preventive role in sodium oxalate-induced acute renal injury. KEY POINTS: • IL-22 could reduce sodium oxalate-mediated cytotoxicity and ameliorate renal injury. • IL-22 could alleviate oxidative stress and mitochondrial dysfunction induced by sodium oxalate. • IL-22 could inhibit inflammatory response of renal injury caused by sodium oxalate.
Collapse
Affiliation(s)
- Yuting Gu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Yilan Shen
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wei Chen
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China
| | - Yulei Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Xiaobin Mei
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, 201203, China.
| | - Hongrui Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
24
|
Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, Li D, Wang X, Tao Z, Guan X, She W, Xu H, Deng Y. Role of ROS-Induced NLRP3 Inflammasome Activation in the Formation of Calcium Oxalate Nephrolithiasis. Front Immunol 2022; 13:818625. [PMID: 35154136 PMCID: PMC8828488 DOI: 10.3389/fimmu.2022.818625] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 01/18/2023] Open
Abstract
Calcium oxalate nephrolithiasis is a common and highly recurrent disease in urology; however, its precise pathogenesis is still unknown. Recent research has shown that renal inflammatory injury as a result of the cell-crystal reaction plays a crucial role in the development of calcium oxalate kidney stones. An increasing amount of research have confirmed that inflammation mediated by the cell-crystal reaction can lead to inflammatory injury of renal cells, promote the intracellular expression of NADPH oxidase, induce extensive production of reactive oxygen species, activate NLRP3 inflammasome, discharge a great number of inflammatory factors, trigger inflammatory cascading reactions, promote the aggregation, nucleation and growth process of calcium salt crystals, and ultimately lead to the development of intrarenal crystals and even stones. The renal tubular epithelial cells (RTECs)-crystal reaction, macrophage-crystal reaction, calcifying nanoparticles, endoplasmic reticulum stress, autophagy activation, and other regulatory factors and mechanisms are involved in this process.
Collapse
Affiliation(s)
- Yunlong Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Sun
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juening Kang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqi He
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jihua Wu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Derong Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Wang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwei Tao
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Guan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wusheng She
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Xu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaoliang Deng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|