1
|
Zhang YY, Tang C, Dou YQ, Luo XJ, Pu J, Peng J. The Chinese Herbal Medicine Li Qi Huo Xue Di Wan Ameliorates Ischemia or Hypoxia-Induced Cardiac Injury and Remodeling in the Heart Through a Mechanism Involving Reduction of Necroptosis. ENVIRONMENTAL TOXICOLOGY 2025; 40:328-346. [PMID: 39530393 DOI: 10.1002/tox.24435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Li Qi Huo Xue Di Wan (LQHXDW), a Chinese herbal medicine, is commonly used to treat symptoms such as palpitations, chest tightness, chest pain, and shortness of breath. However, its potential to reduce ischemia or hypoxia-induced cardiac injury and remodeling, along with the precise mechanisms involved, remains unclear. This study aims to investigate the effects of LQHXDW on cardiac injury and remodeling induced by ischemia or hypoxia, both in vivo and in vitro, and to elucidate the underlying mechanisms. The mouse heart was subjected to ischemia for 14 days, showing evident myocardial injury and notable cardiac remodeling, accompanied by a reduction in cardiac function; these phenomena were reversed in the presence of LQHXDW. In the cultured cardiomyocyte exposed to hypoxia, incubation with LQHXDW increased the cell viability and reduced lactate dehydrogenase release. Mechanistically, LQHXDW exerted inhibitory effect on the phosphorylation levels of RIPK1, RIPK3, and MLKL as well as oxidative stress in the mice hearts suffered ischemia and the cultured cardiomyocytes exposed to hypoxia. Using the methods of ultra-high performance liquid chromatography-quadrupole time-of-flight-mass spectrometry, network pharmacology, and cellular thermal shift assay, phenethyl caffeate and isoliquiritigenin were identified as the potential active compounds in LQHXDW that counteract necroptosis. Based on these observations, we conclude that LQHXDW protects the heart against ischemia or hypoxia-induced cardiac injury and remodeling through suppression of the RIPK1/RIPK3/MLKL pathway-dependent necroptosis and oxidative stress.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Tang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ya-Qi Dou
- Research and Development Center, Guizhou Yibai Pharmaceutical Co., Ltd., Guiyang, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jian Pu
- Research and Development Center, Guizhou Yibai Pharmaceutical Co., Ltd., Guiyang, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
2
|
Zheng Y, Qiu Y, Gao M, Wang Q, Yu L, Cao Z, Luan X. Protective effect of adiponectin on oxidative stress-induced ovarian granulosa cell senescence in geese. Poult Sci 2025; 104:104529. [PMID: 39546920 PMCID: PMC11609555 DOI: 10.1016/j.psj.2024.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Geese are susceptible to oxidative stress during breeding, leading to senescence of granulosa cells (GCs) and reduced egg production. Adiponectin (ADPN) is a cytokine secreted by adipose tissue that functions to regulate metabolism and antioxidants. However, its role in the regulation of goose GCs is unclear. To investigate this, senescence in primary goose GCs was induced by D-gal and assessed via RT‒qPCR, senescence-associated β-galactosidase (SA-β-gal) staining, immunofluorescence, flow cytometry, and transcriptomics. The effect of ADPN on GC senescence was investigated by overexpressing and knocking down ADPN expression. The results showed that ADPN could alleviate oxidative stress and cell cycle arrest in GCs, reduce the expression of the senescence-associated secretory phenotype (SASP)-related genes IL-6 and IL-8, regulate the metabolic capacity of GCs, reduce the accumulation of SA-β-gal, maintain telomere length, and alleviate the senescence of GCs induced by D-gal. The RNA-seq results provided further evidence for the regulatory effect of ADPN on GC senescence. ADPN was shown to attenuate oxidative stress-induced GC senescence through the AGE (Advanced glycation end products)-RAGE (Receptor of advanced glycation end products) and NOD-like receptor pathways. These findings may contribute to the development of improved theoretical references for improving egg-laying performance and prolonging the service life of geese.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunqiao Qiu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Gao
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qianhui Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Lei Yu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongzan Cao
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinhong Luan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Jiang Y, Liu Z, Ye L, Cheng J, Wan J. MiR-449b-5p Ameliorates Hypoxia-induced Cardiomyocyte Injury through Activating PI3K/AKT Pathway by Targeting BCL2L13. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04931-5. [PMID: 38581629 DOI: 10.1007/s12010-024-04931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Recent reports show miR-449b-5p reduces liver and renal ischemia/reperfusion (I/R) injury, but its effects on hypoxia-induced cardiomyocyte injury in ischemic heart disease are still unknown. In this study, AC16 human cardiomyocytes underwent hypoxic conditions for durations of 24, 48, and 72 h. We observed that miR-449b-5p expression was significantly downregulated in hypoxic AC16 cardiomyocytes. Elevating the levels of miR-449b-5p in these cells resulted in enhanced cell survival, diminished release of LDH, and a reduction in cell apoptosis and oxidative stress using CCK-8, LDH assays, flow cytometry, TUNEL staining, and various commercial kits. Conversely, reducing miR-449b-5p levels resulted in the opposite effects. Through bioinformatics analysis and luciferase reporter assays, BCL2-like 13 (BCL2L13) was determined to be a direct target of miR-449b-5p. Inhibiting BCL2L13 greatly inhibited hypoxia-induced cell viability loss, LDH release, cell apoptosis, and excessive production of oxidative stress, whereas increasing BCL2L13 negated miR-449b-5p's protective impact in hypoxic AC16 cardiomyocytes. Additionally, miR-449b-5p elevated the levels of the proteins p-PI3K, p-AKT, and Bcl-2, while decreasing Bax expression in hypoxic AC16 cardiomyocytes by targeting BCL2L13. In summary, the research indicates that the protective effects of miR-449b-5p are facilitated through the activation of the PI3K/AKT pathway, which promotes cell survival, and by targeting BCL2L13, which inhibits apoptosis, offering a potential therapeutic strategy for ischemic heart disease by mitigating hypoxia-induced cardiomyocyte injury.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Emergency Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui, 230000, China
| | - Zeyan Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui, 230000, China
| | - Li Ye
- Department of Emergency Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui, 230000, China
| | - Jinglin Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui, 230000, China
| | - Jun Wan
- Department of Emergency Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei, Anhui, 230000, China.
| |
Collapse
|
4
|
Zhu K, Fan R, Cao Y, Yang W, Zhang Z, Zhou Q, Ren J, Shi X, Gao Y, Guo X. Glycyrrhizin attenuates myocardial ischemia reperfusion injury by suppressing Inflammation, oxidative stress, and ferroptosis via the HMGB1-TLR4-GPX4 pathway. Exp Cell Res 2024; 435:113912. [PMID: 38176464 DOI: 10.1016/j.yexcr.2024.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Ferroptosis, a form of regulated cell death process, play an important role in myocardial ischemia‒reperfusion (I/R) injury. Glycyrrhizin (GL), a natural glycoconjugate triterpene, has the property to improve growth rate, immune regulation, antioxidant, anti-inflammatory. However, whether GL can attenuate myocardial I/R injury by modulating ferroptosis or other mechanisms are still unclear. In this study, SD rats underwent in vivo myocardial ischemia/reperfusion (I/R) surgery, while H9C2 cells were subjected to the hypoxia/reoxygenation (H/R) model for in vitro experiments. In addition, TAK-242, a TLR4-specific antagonist, and GL were also used to evaluate the effect and mechanisms of GL on the cardiac function and expression of ferroptosis-related gene and protein in vivo and vitro. The results show that GL decreased not only the expression of the inflammation-related factors (HMGB1, TNF-α, IL-6, IL-18 and IL-1β), but also reduced the number of TUNEL-positive cardiomyocytes, and mitigated pathological alterations in I/R injury. In addition, GL decreased the levels of MDA, promoted antioxidant capacity such as GSH, CAT, Cu/Zn-SOD, Mn-SOD, and SOD in vivo and vitro. More importantly, GL and TAK-242 regulate ferroptosis-related protein and gene expression in I/R and H/R model. Surprisingly, GL may ameliorate cardiomyocyte ferroptosis and ultimately improves cardiac function induced by H/R via the HMGB1-TLR4-GPX4 axis. Therefore, we have highlighted a novel mechanism by which GL regulates inflammation, oxidative stress, and ferroptosis via the HMGB1-TLR4-GPX4 pathway to prevent myocardial I/R injury. GL appears to be a potentially applicable drug for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| | - Rong Fan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Cao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Zhe Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China; Department of Pulmonary and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Qiang Zhou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Ren
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiushan Shi
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cellular Physiology, Shanxi Province, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China.
| | - Xiang Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Zhang Y, Zhang Y, Zang J, Li Y, Wu X. Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Dev Dis 2023; 10:303. [PMID: 37504559 PMCID: PMC10380972 DOI: 10.3390/jcdd10070303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease morbidity/mortality are increasing due to an aging population and the rising prevalence of diabetes and obesity. Therefore, innovative cardioprotective measures are required to reduce cardiovascular disease morbidity/mortality. The role of necroptosis in myocardial ischemia-reperfusion injury (MI-RI) is beyond doubt, but the molecular mechanisms of necroptosis remain incompletely elucidated. Growing evidence suggests that MI-RI frequently results from the superposition of multiple pathways, with autophagy, ferroptosis, and CypD-mediated mitochondrial damage, and necroptosis all contributing to MI-RI. Receptor-interacting protein kinases (RIPK1 and RIPK3) as well as mixed lineage kinase domain-like pseudokinase (MLKL) activation is accompanied by the activation of other signaling pathways, such as Ca2+/calmodulin-dependent protein kinase II (CaMKII), NF-κB, and JNK-Bnip3. These pathways participate in the pathological process of MI-RI. Recent studies have shown that inhibitors of necroptosis can reduce myocardial inflammation, infarct size, and restore cardiac function. In this review, we will summarize the molecular mechanisms of necroptosis, the links between necroptosis and other pathways, and current breakthroughs in pharmaceutical therapies for necroptosis.
Collapse
Affiliation(s)
- Yinchang Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yantao Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Jinlong Zang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
6
|
Han W, Yang S, Xiao H, Wang M, Ye J, Cao L, Sun G. Role of Adiponectin in Cardiovascular Diseases Related to Glucose and Lipid Metabolism Disorders. Int J Mol Sci 2022; 23:15627. [PMID: 36555264 PMCID: PMC9779180 DOI: 10.3390/ijms232415627] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Lifestyle changes have led to increased incidence of cardiovascular disease (CVD); therefore, potential targets against CVD should be explored to mitigate its risks. Adiponectin (APN), an adipokine secreted by adipose tissue, has numerous beneficial effects against CVD related to glucose and lipid metabolism disorders, including regulation of glucose and lipid metabolism, increasing insulin sensitivity, reduction of oxidative stress and inflammation, protection of myocardial cells, and improvement in endothelial cell function. These effects demonstrate the anti-atherosclerotic and antihypertensive properties of APN, which could aid in improving myocardial hypertrophy, and reducing myocardial ischemia/reperfusion (MI/R) injury and myocardial infarction. APN can also be used for diagnosing and predicting heart failure. This review summarizes and discusses the role of APN in the treatment of CVD related to glucose and lipid metabolism disorders, and explores future APN research directions and clinical application prospects. Future studies should elucidate the signaling pathway network of APN cardiovascular protective effects, which will facilitate clinical trials targeting APN for CVD treatment in a clinical setting.
Collapse
Affiliation(s)
- Wen Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuxian Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haiyan Xiao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li Cao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
7
|
Han M, Wang X, Wang J, Lang D, Xia X, Jia Y, Chen Y. Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: A potential mechanism of inflammation-related necroptosis. Front Nutr 2022; 9:953646. [PMID: 36017227 PMCID: PMC9395728 DOI: 10.3389/fnut.2022.953646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common autoimmune and chronic inflammatory cutaneous disease with a relapsing-remitting course. Necroptosis is a regulated necrotic cell death mediated by receptor-interacting protein 1 (RIP1), receptor-interacting protein 3 (RIP3), and mixed lineage kinase domain-like pseudokinase (MLKL), which is activated by tumor necrosis factor-α (TNF-α). However, the mechanism and the role of necroptosis have not been delineated in AD progression. (-)-Epigallocatechin-3-gallate (EGCG), the main biological activity of tea catechin, is well known for its beneficial effects in the treatment of skin diseases. Here, PEG-PLGA-EGCG nanoparticles (EGCG-NPs) were formulated to investigate the bioavailability of EGCG to rescue cellular injury following the inhibition of necroptosis after AD. 2,4-dinitrochlorobenzene (DNCB) was used to establish AD mouse models. As expected, topically applied EGCG-NPs elicited a significant amelioration of AD symptoms in skin lesions, including reductions in the ear and skin thickness, dermatitis score, and scratching behavior, which was accompanied by redox homeostasis restored early in the experiment. In addition, EGCG-NPs significantly decreased the expression of inflammatory cytokines like TNF-α, interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-6 (IL-6), and interleukin-17A (IL-17A) in a time-dependent manner than those of in AD group. As a result, the overexpression of RIP1, RIP3, and MLKL in the entire epidermis layers was dramatically blocked by EGCG-NPs, as well as the expression ofphosphorylated p38 (p-p38), extracellular signal-regulated kinase 1 (ERK1), and extracellular signal-regulated kinase 2 (ERK2). These findings promote that EGCG-NPs formulation represents a promising drug-delivery strategy for the treatment of AD by maintaining the balance of Th1/Th2 inflammation response and targeting necroptosis.
Collapse
Affiliation(s)
- Mengguo Han
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xue Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Jian Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Dongcen Lang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yongfang Jia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Ying Chen
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
8
|
Hydrogen Sulfide Plays an Important Role by Regulating Endoplasmic Reticulum Stress in Diabetes-Related Diseases. Int J Mol Sci 2022; 23:ijms23137170. [PMID: 35806174 PMCID: PMC9266787 DOI: 10.3390/ijms23137170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) plays important roles in protein synthesis, protein folding and modification, lipid biosynthesis, calcium storage, and detoxification. ER homeostasis is destroyed by physiological and pharmacological stressors, resulting in the accumulation of misfolded proteins, which causes ER stress. More and more studies have shown that ER stress contributes to the pathogenesis of many diseases, such as diabetes, inflammation, neurodegenerative diseases, cancer, and autoimmune diseases. As a toxic gas, H2S has, in recent years, been considered the third most important gas signal molecule after NO and CO. H2S has been found to have many important physiological functions and to play an important role in many pathological and physiological processes. Recent evidence shows that H2S improves the body’s defenses to many diseases, including diabetes, by regulating ER stress, but its mechanism has not yet been fully understood. We therefore reviewed recent studies of the role of H2S in improving diabetes-related diseases by regulating ER stress and carefully analyzed its mechanism in order to provide a theoretical reference for future research.
Collapse
|