1
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
2
|
Liu Y, Hu Y, Li B, Su R, Han Z, Jin B, Li T, Zheng X, Han Y. Innate lymphoid cell subsets in the pathogenesis of primary biliary cholangitis. J Gastroenterol Hepatol 2024; 39:1431-1441. [PMID: 38606537 DOI: 10.1111/jgh.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND AIM Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by destructive lymphocytic cholangitis and specific anti-mitochondrial antibodies. Innate lymphoid cells (ILCs) have been reported to play a role in liver homeostasis and autoimmunity. METHODS We evaluated the features of peripheral ILC1s and ILC3 in patients with PBC and hepatic ILC1 and ILC3 in two different PBC mouse models (dominant-negative transforming growth factor-beta receptor II [dnTGFβRII] and 2-octynoic acid-bovine serum albumin [2OA-BSA]). RESULTS A total of 115 patients and 18 healthy controls were enrolled in the study. Decreased circulating ILC1/3s were observed in early-stage PBC patients, and the numbers of ILC1/3s were negatively correlated with specific parameters and the proportion of T-helper (Th) 1 and Th17 cells. Reduced numbers of ILC1s were observed in PBC mouse models with different etiologies. ILC1-deficient mice had more severe hepatic inflammation after inducing the 2OA-BSA model. Continuous low-dose injections of lipopolysaccharide (LPS) reduced ILC1 levels in mice, consistent with the lower level of ILC1s in PBC patients with high LPS (> 50 ng/mL), and aggravated hepatic lymphocyte infiltration. CONCLUSION Patients with PBC had decreased ILC1s, which were negatively correlated with CD4+ T cells. Deficient ILC1 populations led to disease exacerbations in mice. Our results indicated that ILC1s may participate in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Yansheng Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Bo Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Rui Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Zheyi Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ting Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaohong Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ying Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Tchitchek N, Binvignat M, Roux A, Pitoiset F, Dubois J, Marguerit G, Saadoun D, Cacoub P, Sellam J, Berenbaum F, Hartemann A, Amouyal C, Lorenzon R, Mariotti-Ferrandiz E, Rosenzwajg M, Klatzmann D. Deep immunophenotyping reveals that autoimmune and autoinflammatory disorders are spread along two immunological axes capturing disease inflammation levels and types. Ann Rheum Dis 2024; 83:638-650. [PMID: 38182406 DOI: 10.1136/ard-2023-225179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVES Based on genetic associations, McGonagle and McDermott suggested a classification of autoimmune and autoinflammatory diseases as a continuum ranging from purely autoimmune to purely autoinflammatory diseases and comprising diseases with both components. We used deep immunophenotyping to identify immune cell populations and molecular targets characterising this continuum. METHODS We collected blood from 443 patients with one of 15 autoimmune or autoinflammatory diseases and 71 healthy volunteers. Deep phenotyping was performed using 13 flow cytometry panels characterising over 600 innate and adaptive cell populations. Unsupervised and supervised analyses were conducted to identify disease clusters with their common and specific cell parameters. RESULTS Unsupervised clustering categorised these diseases into five clusters. Principal component analysis deconvoluted this clustering into two immunological axes. The first axis was driven by the ratio of LAG3+ to ICOS+ in regulatory T lymphocytes (Tregs), and segregated diseases based on their inflammation levels. The second axis was driven by activated Tregs and type 3 innate lymphoid cells (ILC3s), and segregated diseases based on their types of affected tissues. We identified a signature of 23 cell populations that accurately characterised the five disease clusters. CONCLUSIONS We have refined the monodimensional continuum of autoimmune and autoinflammatory diseases as a continuum characterised by both disease inflammation levels and targeted tissues. Such classification should be helpful for defining therapies. Our results call for further investigations into the role of the LAG3+/ICOS+ balance in Tregs and the contribution of ILC3s in autoimmune and autoinflammatory diseases. TRIAL REGISTRATION NUMBER NCT02466217.
Collapse
Affiliation(s)
- Nicolas Tchitchek
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Marie Binvignat
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- INSERM U938, Rheumatology Department, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Alexandra Roux
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Fabien Pitoiset
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Johanna Dubois
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Gwendolyn Marguerit
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - David Saadoun
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Department of Internal Medicine and Clinical Immunology and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Reference Center for Autoinflammatory Disorders (CEREMAIA); Reference Center for Systemic Autoimmune Diseases, Paris, France
| | - Patrice Cacoub
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Department of Internal Medicine and Clinical Immunology and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Reference Center for Autoinflammatory Disorders (CEREMAIA); Reference Center for Systemic Autoimmune Diseases, Paris, France
| | - Jérémie Sellam
- INSERM U938, Rheumatology Department, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Francis Berenbaum
- INSERM U938, Rheumatology Department, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Agnès Hartemann
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Diabetology-Metabolism Department, AP-HP, Institut Hospitalo-Universitaire de Cardiometabolisme et Nutrition (ICAN), Pitié-Salpêtrière-Charles Foix Hospital, Sorbonne Université, Paris, France
| | - Chloé Amouyal
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Diabetology-Metabolism Department, AP-HP, Institut Hospitalo-Universitaire de Cardiometabolisme et Nutrition (ICAN), Pitié-Salpêtrière-Charles Foix Hospital, Sorbonne Université, Paris, France
| | - Roberta Lorenzon
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Encarnita Mariotti-Ferrandiz
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michelle Rosenzwajg
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - David Klatzmann
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| |
Collapse
|
4
|
Wang T, Rui J, Shan W, Xue F, Feng D, Dong L, Mao J, Shu Y, Mao C, Wang X. Imbalance of Th17, Treg, and helper innate lymphoid cell in the peripheral blood of patients with rheumatoid arthritis. Clin Rheumatol 2022; 41:3837-3849. [PMID: 35925523 PMCID: PMC9652246 DOI: 10.1007/s10067-022-06315-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease involving a variety of immune cells, including adaptive T and B cells and innate lymphoid cells (ILCs). Understanding the pathogenic role of these immune cells in RA provides new insights into the intervention and treatment of RA. METHODS A total of 86 patients with RA (RA group) and 50 healthy controls (HC) were included in the study. The immune cells of CD4+, CD19+ B, NK, Th17, Treg, ILCs, and their subsets (i.e., ILC1s, ILC2s, and ILC3s) were characterized in peripheral blood mononuclear cells by flow cytometry. Cytokines (i.e., IFN-γ, IL-4, IL-10, IL-17A, IL-22, and IL-33) in sera were detected using ELISA. The above immune cells and cytokines were analyzed in patients with different disease activity status and positive ( +) or negative ( -) rheumatoid factor (RF)/anti-citrullinated protein antibodies (ACPA). RESULTS Patients with RA had higher percentages of CD4+ T, CD19+ B, Th17, ILC2s, and ILC3s and lower percentages of Treg and ILC1s than HC. Patients with RA had elevated levels of IFN-γ, IL-4, IL-17A, and IL-22 and decreased level of IL-10. Compared with HC, patients with high disease activity had higher percentages of Th17, ILC2s, and ILC3s; lower percentages of ILC1s; and lower level of IL-10. The percentage of Treg cells in remission, low, moderate, and high disease activities decreased, whereas the level of IL-17A increased compared with HC. Furthermore, RF+ or ACPA+ patients exhibited elevated percentages of CD19+ B, ILC2s, and ILC3s and had decreased percentage of ILC1s and Treg cells than HC. The percentage of Th17 cells increased in RF-/ACPA- and RF+/ACPA+ patients. However, the above immune cells between RF or ACPA positive and negative patients were not significantly different. CONCLUSION Th17, Treg, and ILC subset dysregulations are present in patients with RA but may not be associated with conventionally defined seropositive RF and ACPA. Key Points • Th17, Treg, and ILC subset dysregulations are present in patients with RA but may reflect inflammation rather than specific diseases and stages. • No difference for the distribution of Th17, Treg, and ILC subsets between RF+ and RF- patients and between ACPA+ and ACPA- patients. The screening spectrum of RF and ACPA serology should be expanded to elucidate the role of immune cells in RA pathogenesis.
Collapse
Affiliation(s)
- Ting Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Department of Clinical Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jinbing Rui
- Department of Rheumatology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wenqi Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yang Shu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Chaoming Mao
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
5
|
Li H, Zhan H, Cheng L, Yan S, Wang L, Li Y. Imbalanced distribution of group 2 innate lymphoid cells (ILCs) and ILC precursors in peripheral blood of patients with primary biliary cholangitis. Scand J Immunol 2022; 96:e13166. [PMID: 35315090 DOI: 10.1111/sji.13166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Innate lymphoid cells (ILCs), a novel group of innate immune cells, play a key role in the early immune response via rapidly reacting to signals expressed by tissue-resident cells. ILCs contribute to some autoimmune diseases. We aim to investigate the proportions of circulating ILC subgroups in patients with primary biliary cholangitis (PBC). Overall, 48 patients with PBC and 24 healthy controls (HCs) were enrolled. Circulating ILCs and cytokine production were detected by flow cytometry. The proportions of total ILCs, ILC precursors (ILCPs), and ILCP/ILC2 ratio increased and that of ILC2s decreased in patients with PBC. ILC2 proportion was negatively correlated with gamma-glutamyl transpeptidase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). The proportion of ILCPs and ILCP/ILC2 ratio were positively correlated with alkaline phosphatase, GGT, ALT, and AST. ILC2 proportion was significantly decreased in the ursodeoxycholic acid (UDCA) -non-responder group compared with the UDCA-responder group, whereas the proportion of ILCPs and ILCP/ILC2 were ratio significantly increased. The proportions of CD38+ ILC2s, CD38+ ILCPs, CD45RO+ ILC2s, and CD45RO+ ILCPs were significantly higher in patients with PBC than in HCs. Levels of IL-17A producing ILCs were higher in patients with PBC than in HCs. PBC is accompanied by alterations in circulating ILCs. The proportions of ILC2s, ILCPs, and ILCP/ILC2 ratio were associated with the PBC disease activity. The proportions of ILCPs and ILCP/ILC2 ratio may reflect the UDCA treatment failure in patients with PBC. ILC2s and ILCPs from patients with PBC get activated, these cells may be involved in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Wang
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Clottu AS, Humbel M, Fluder N, Karampetsou MP, Comte D. Innate Lymphoid Cells in Autoimmune Diseases. Front Immunol 2022; 12:789788. [PMID: 35069567 PMCID: PMC8777080 DOI: 10.3389/fimmu.2021.789788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Innate lymphoid cells (ILC) are a heterogeneous group of immune cells characterized by lymphoid morphology and cytokine profile similar to T cells but which do not express clonally distributed diverse antigen receptors. These particular cells express transcription factors and cytokines reflecting their similarities to T helper (Th)1, Th2, and Th17 cells and are therefore referred to as ILC1, ILC2, and ILC3. Other members of the ILC subsets include lymphoid tissue inducer (LTi) and regulatory ILC (ILCreg). Natural killer (NK) cells share a common progenitor with ILC and also exhibit a lymphoid phenotype without antigen specificity. ILC are found in low numbers in peripheral blood but are much more abundant at barrier sites such as the skin, liver, airways, lymph nodes, and the gastrointestinal tract. They play an important role in innate immunity due to their capacity to respond rapidly to pathogens through the production of cytokines. Recent evidence has shown that ILC also play a key role in autoimmunity, as alterations in their number or function have been identified in systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Here, we review recent advances in the understanding of the role of ILC in the pathogenesis of autoimmune diseases, with particular emphasis on their role as a potential diagnostic biomarker and as therapeutic targets.
Collapse
Affiliation(s)
- Aurelie S Clottu
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Morgane Humbel
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Natalia Fluder
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Denis Comte
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|