1
|
Naz R, Saqib F. Ethnopharmacological basis for traditional use of Tradescantia spathaceae as Nephroprotective agent via in vitro, in vivo and Molecular Docking Techniques. JOURNAL OF ETHNOPHARMACOLOGY 2025:119451. [PMID: 39923959 DOI: 10.1016/j.jep.2025.119451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tradescantia spathaceae Sw. (commonly referred to as the oyster plant, boat lily, or Moses in a basket) is classified within the family Commelinaceae. The fresh infusion of this plant is utilized for addressing renal issues. Its foliage is employed in the management of kidney stones, renal discomfort, kidney infections, and dysuria. AIM OF STUDY The aim of this research was to conduct pharmacological validation of T. spathaceae in relation to the treatment of disorders affecting the urinary system. in-vivo, in-vitro, and in-silico investigations were designed to demonstrate the possible advantages of T. spathaceae in renal protection and diuresis. METHODOLOGY The pharmacologically active constituents of the ethanoic extract of T. spathaceae were analysed utilizing High-Performance Liquid Chromatography (HPLC). In-vivo experiments were directed to evaluate the potential benefits of T. spathaceae in facilitating diuresis, safeguarding the kidneys from cisplatin-induced toxicity, and inducing spasms in isolated bladder tissues to clarify its spasmolytic properties. RESULTS HPLC analysis of the hydroethanolic extract of T. spathaceae identified gallic acid, vanillic acid, and p-coumaric acid. This extract showed dose dependent relaxation of contractions induced by carbachol (1μM), acetylcholine (Ach) (1μM), and low potassium (25 millimole) in isolated strips of the urinary bladder. Its spasmolytic effects were comparable to the standard agents atropine and oxybutynin. In vivo studies demonstrated the extract's protective effects on the kidneys, along with anti-inflammatory and diuretic properties. Additionally, it offered protection against cisplatin-induced toxicity while promoting diuresis. CONCLUSION TSCR exhibited nephroprotective effects through diuretic, anti-inflammatory, and anti-muscarinic actions.
Collapse
Affiliation(s)
- Rabia Naz
- Faculty of Pharmacy, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| | - Fatima Saqib
- Faculty of Pharmacy, Bahauddin Zakariya University, 60800, Multan, Pakistan.
| |
Collapse
|
2
|
Alhazmi AI, El-Refaei MF, Abdallah EAA. Protective effects of gallic acid against nickel-induced kidney injury: impact of antioxidants and transcription factor on the incidence of nephrotoxicity. Ren Fail 2024; 46:2344656. [PMID: 38685608 PMCID: PMC11062283 DOI: 10.1080/0886022x.2024.2344656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Nickel (Ni) is a common metal with a nephrotoxic effect, damaging the kidneys. This study investigated the mechanism by which gallic acid (GA) protects mice kidneys against renal damage induced by Nickel oxide nanoparticles (NiO-NPs). Forty male Swiss albino mice were randomly assigned into four groups, each consisting of ten mice (n = 10/group): Group I the control group, received no treatment; Group II, the GA group, was administrated GA at a dosage of 110 mg/kg/day body weight; Group III, the NiO-NPs group, received injection of NiO-NPs at a concentration of 20 mg/kg body weight for 10 consecutive days; Group IV, the GA + NiO-NPs group, underwent treatment with both GA and NiO-NPs. The results showed a significant increase in serum biochemical markers and a reduction in antioxidant activities. Moreover, levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), phosphorylated nuclear factor kappa B (p65), and protein carbonyl (PC) were significantly elevated in group III compared with group I. Furthermore, the western blot analysis revealed significant high NF-κB p65 expression, immunohistochemistry of the NF-κB and caspase-1 expression levels were significantly increased in group III compared to group I. Additionally, the histopathological inspection of the kidney in group III exhibited a substantial increase in extensive necrosis features compared with group I. In contrast, the concomitant coadministration of GA and NiO-NPs in group IV showed significant biochemical, antioxidant activities, immunohistochemical and histopathological improvements compared with group III. Gallic acid has a protective role against kidney dysfunction and renal damage in Ni-nanoparticle toxicity.
Collapse
Affiliation(s)
| | - Mohamed F. El-Refaei
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Biochemistry and Molecular Biology, Genetic Institute, Sadat City University, Sadat City, Egypt
| | - Eman A. A. Abdallah
- Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
- Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
3
|
Alqahtani MM. Cisplatin-Induced Renal Failure Measured by Glomerular Filtration Rate (GFR) with 99mTc-DTPA Scans in Cancer Patients: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2024; 14:2468. [PMID: 39594134 PMCID: PMC11593308 DOI: 10.3390/diagnostics14222468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Cisplatin is a potent agent commonly used to treat cancer, but its effects pose a significant risk to renal function. Therefore, the present study aimed to evaluate the impact of cisplatin on renal function as measured by glomerular filtration rate (GFR) using diethyltriamine-penta-acetic acid (DTPA) renal scintigraphy. Methods: Extensive literature searches were performed using PRISMA guidelines that investigated cisplatin-induced renal failure by measuring GFR with DTPA. Eligible studies were included based on predefined criteria. Data on GFR, serum creatinine levels, and acute kidney injury (AKI) before and after cisplatin therapy were extracted and analyzed. A meta-analysis was performed utilizing RevMan 5.4 to determine the overall effect of cisplatin on GFR before and after treatment. For non-randomized controlled trials (RCTs), quality assessment was performed using the Newcastle-Ottawa Scale, while for RCT, the Cochrane risk of bias tool was utilized. Results: Initially, 1003 studies were searched from different databases, including ScienceDirect, PubMed, Scopus, Google Scholar, and The Cochrane Library, and after screening, 8 studies (PubMed, Scopus, and GoogleS cholar) with 489 patients were found eligible for inclusion in the present study. Cisplatin was administrated with varying doses ranging from 20 mg/m2 to 114.02 mg/m2. The findings underscore the nephrotoxic effects of cisplatin, a widely used chemotherapeutic agent, as demonstrated by the significant decline in GFR observed across multiple treatment cycles, and these findings were also supported by the findings of a meta-analysis that showed a significant (p < 0.01) difference between peri- and post-treatment GFR level with 37.06 (95% CI, 10.90-63.23) effect size and 96% heterogeneity. In addition, the included studies were found to be of high quality. Conclusions: Cisplatin significantly affects renal function, as evidenced by a decrease in GFR measured with DTPA. The findings underscore the importance of the routine monitoring of GFR to detect early renal injury and guide treatment modification. Future research should focus on strategies to reduce cisplatin-induced toxicity and explore alternative therapies with reduced renal risk.
Collapse
Affiliation(s)
- Mansour M Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| |
Collapse
|
4
|
Balkrishna A, Gohel V, Pathak N, Joshi M, Singh R, Kumari A, Dev R, Varshney A. Renogrit selectively protects against cisplatin-induced injury in human renal tubular cells and in Caenorhabditis elegans by harmonizing apoptosis and mitophagy. Sci Rep 2024; 14:19443. [PMID: 39169052 PMCID: PMC11339073 DOI: 10.1038/s41598-024-69797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Cisplatin-induced nephrotoxicity restricts its clinical use against solid tumors. The present study elucidated the pharmacological effects of Renogrit, a plant-derived prescription medicine, using cisplatin-induced human renal proximal tubular (HK-2) cells and Caenorhabditis elegans. Quantification of phytochemicals in Renogrit was performed on HPTLC and UHPLC platforms. Renogrit was assessed in vitro in HK-2 cells post-exposure to clinically relevant concentration of cisplatin. It was observed that renoprotective properties of Renogrit against cisplatin-induced injury stem from its ability to regulate renal injury markers (KIM-1, NAG levels; NGAL mRNA expression), redox imbalance (ROS generation; GST levels), and mitochondrial dysfunction (mitochondrial membrane potential; SKN-1, HSP-60 expression). Renogrit was also found to modulate apoptosis (EGL-1 mRNA expression; protein levels of p-ERK, p-JNK, p-p38, c-PARP1), necroptosis (intracellular calcium accumulation; RIPK1, RIPK3, MLKL mRNA expression), mitophagy (lysosome population; mRNA expression of PINK1, PDR1; protein levels of p-PINK1, LC3B), and inflammation (IL-1β activity; protein levels of LXR-α). More importantly, Renogrit treatment did not hamper normal anti-proliferative effects of cisplatin as observed from cytotoxicity analysis on MCF-7, A549, SiHa, and T24 human cancer cells. Taken together, Renogrit could be a potential clinical candidate to mitigate cisplatin-induced nephrotoxicity without compromising the anti-neoplastic properties of cisplatin.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249405, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow, G411AU, UK
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Nishit Pathak
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Monali Joshi
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Ankita Kumari
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Haridwar, Uttarakhand, 249405, India.
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, 249405, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Zhang Z, Liang B, Jike W, Li R, Su X, Yu J, Liu T. The Protective Effect of Marsdenia tenacissima against Cisplatin-Induced Nephrotoxicity Mediated by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. Molecules 2023; 28:7582. [PMID: 38005304 PMCID: PMC10674371 DOI: 10.3390/molecules28227582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin (Cis) is considered to be one of the most effective drugs for killing cancer cells and remains a first-line chemotherapeutic agent. However, Cis's multiple toxicities (especially nephrotoxicity) have limited its clinical use. Marsdenia tenacissima (Roxb.) Wight et Arn. (MT), a traditional Chinese medicine (TCM) employed extensively in China, not only enhances the antitumor effect in combination with Cis, but is also used for its detoxifying effect, as it reduces the toxic side effects of chemotherapy drugs. The aim of this study was to explore the therapeutic effect of MT on Cis-induced nephrotoxicity, along with its underlying mechanisms. In this study, liquid-mass spectrometry was performed to identify the complex composition of the extracts of MT. In addition, we measured the renal function, antioxidant enzymes, and inflammatory cytokines in mice with Cis-induced nephrotoxicity and conducted renal histology evaluations to assess renal injury. The expressions of the proteins related to antioxidant, anti-inflammatory, and apoptotic markers in renal tissues was detected by Western blotting (WB). MT treatment improved the renal function, decreased the mRNA expression of the inflammatory factors, and increased the antioxidant enzyme activity in mice. A better renal histology was observed after MT treatment. Further, MT inhibited the expression of the phospho-NFκB p65 protein/NFκB p65 protein (p-p65)/p65, phospho-inhibitor of nuclear factor kappa B kinase beta subunit/inhibitor of nuclear factor kappa B kinase beta subunit (p-IKKβ/IKKβ), Bcl-2-associated X (Bax), and Cleaved Caspase 3/Caspase 3 proteins, while the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Recombinant NADH Dehydrogenase, Quinone 1 (NQO1), and B-cell lymphoma-2 (Bcl-2) was increased. The present study showed that MT ameliorated renal injury, which mainly occurs through the regulation of the Nrf2 pathway, the NF-κB pathway, and the suppression of renal tissue apoptosis. It also suggests that MT can be used as an adjuvant to mitigate the nephrotoxicity of Cis chemotherapy.
Collapse
Affiliation(s)
- Zhiguang Zhang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Boya Liang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Wugemo Jike
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Runtian Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Xinxin Su
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| |
Collapse
|
6
|
Ewees MGED, Orfali R, Rateb EE, Hassan HM, Hozzein WN, Alkhalfah DHM, Sree HTA, Abdel Rahman FEZS, Rateb ME, Mahmoud NI. Modulation of mi-RNA25/Ox-LDL/NOX4 signaling pathway by polyphenolic compound Hydroxytyrosol as a new avenue to alleviate cisplatin-induced acute kidney injury, a mechanistic study in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104262. [PMID: 37699441 DOI: 10.1016/j.etap.2023.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Acute kidney injury (AKI) caused by Cis is considered one of the most severe adverse effects, which restricts its use and efficacy. This study seeks to examine the potential reno-protective impact of phenolic compound Hydroxytyrosol (HT) against Cis-induced AKI and the possible involvement of the mi-RNA25/Ox-LDL/NOX4 pathway elucidating the probable implicated molecular mechanisms. Forty rats were placed into 5 groups. Group I received saline only. Group II received Cis only. Group III, IV, and V received 20, 50, and 100 mg/kg b.w, of HT, respectively, with Cis delivery. NOX4, Ox-LDL, and gene expression of mi-RNA 25, TNF-α, and HO-1 in renal tissue were detected. HT showed reno-protective effect and significantly upregulated mi-RNA 25 and HO-1 as well as decreased the expression of NOX4, Ox-LDL, and TNF-α. In conclusion, HT may be promising in the fight against Cis-induced AKI through modulation of mi-RNA25/Ox-LDL/NOX4 pathway.
Collapse
Affiliation(s)
- Mohamed Gamal El-Din Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| | - Enas Ezzat Rateb
- Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt.
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Dalal Hussien M Alkhalfah
- Department of Biology. College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Haidy Tamer Abo Sree
- Department of Basic Sciences Department, Biochemistry, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef 11787, Egypt.
| | - Fatema El-Zahraa S Abdel Rahman
- Department of Basic Sciences Department, Physiology, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef 11787, Egypt.
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Nesreen Ishak Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| |
Collapse
|
7
|
Turan I, Canbolat D, Demir S, Kerimoglu G, Colak F, Turkmen Alemdar N, Mentese A, Aliyazicioglu Y. The ameliorative effect of Primula vulgaris on cisplatin-induced nephrotoxicity in rats and quantification of its phenolic components using LC-ESI-MS/MS. Saudi Pharm J 2023; 31:101730. [PMID: 37583754 PMCID: PMC10424254 DOI: 10.1016/j.jsps.2023.101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023] Open
Abstract
Cisplatin (CDDP) is an important chemotherapeutic agent, accumulation of which in kidney tissue causes nephrotoxicity and renal failure. The aim of this study was to evaluate, for the first time in the literature, the protective effect of dimethyl sulfoxide (DMSO) extract of Primula vulgaris leaf (PVE) against CDDP-induced nephrotoxicity in rats. The PVE content was characterized using liquid chromatography-mass spectrometry. Nephrotoxicity was induced with a single dose of CDDP (7.5 mg/kg). Thirty female Wistar-Albino rats were divided into five groups (control, DMSO, CDDP (7.5 mg/kg), CDDP + PVE (25 mg/kg), and CDDP + PVE (50 mg/kg)). Biochemical and histopathological analyses were then performed. Rutin, gallic acid, p-coumaric acid and protocatechuic acid were identified as major components of PVE. Total antioxidant status and glutathione (GSH) values increased significantly in the serum samples from the treatment group compared to the CDDP group, while blood urea nitrogen, creatinine, oxidative stress index, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), total oxidant status, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) values decreased significantly. GSH levels increased significantly in the treatment group compared to the CDDP group, while TNF-α, caspase-3, 8-OHdG, MDA levels and damage scores decreased significantly. In conclusion, PVE exhibited strong protective effects through its anti-apoptotic, antioxidant, and anti-inflammatory activities against nephrotoxicity and oxidative damage caused by CDDP in rats.
Collapse
Affiliation(s)
- Ibrahim Turan
- Department of Biochemistry, Faculty of Pharmacy, University of Health Sciences, 06010, Ankara, Turkey
| | - Deniz Canbolat
- Medicinal Aromatic Plants Application and Research Center, Artvin Coruh University, 08000, Artvin, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Fatih Colak
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Ahmet Mentese
- Departmant of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Yüksel Aliyazicioglu
- Departmant of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
8
|
Chen Y, Dai X, Chen W, Qiao Y, Bai R, Duan X, Zhang K, Chen X, Li X, Mo S, Cao W, Li X, Liu K, Dong Z, Lu J. Diosmetin suppresses the progression of ESCC by CDK2/Rb/E2F2/RRM2 pathway and synergies with cisplatin. Oncogene 2023:10.1038/s41388-023-02750-2. [PMID: 37349644 DOI: 10.1038/s41388-023-02750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Cisplatin (CDDP) is the first-line drug in the clinical treatment of esophageal squamous cell carcinoma (ESCC), which has severe nephrotoxicity. Diosmetin (DIOS) can protect kidney from oxidative damage, however, its function in ESCC is unknown. This study aims to explore the effect and mechanism of DIOS on ESCC and its combined effect with CDDP. Herein, we found that DIOS significantly inhibited the progression of ESCC in vitro and in vivo. Furthermore, the anti-tumor effect of DIOS was not statistically different from that of CDDP. Mechanically, transcriptomics revealed that DIOS inhibited the E2F2/RRM2 signaling pathway. The transcriptional regulation of RRM2 by E2F2 was verified by luciferase assay. Moreover, docking model, CETSA, pull-down assay and CDK2 inhibitor assay confirmed that DIOS directly targeted CDK2, leading to significant suppression of ESCC. Additionally, the patient-derived xenografts (PDX) model showed that the combination of DIOS and CDDP significantly inhibited the growth of ESCC. Importantly, the combined treatment with DIOS and CDDP significantly reduced the mRNA expression levels of kidney injury biomarkers KIM-1 and NGAL in renal tissue, as well as the levels of blood urea nitrogen, serum creatinine and blood uric acid compared to the single treatment with CDDP. In conclusion, DIOS could be an effective drug and a potential chemotherapeutic adjuvant for ESCC treatment. Furthermore, DIOS could reduce the nephrotoxicity of CDDP to some extent.
Collapse
Affiliation(s)
- Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, PR China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Wenbo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China.
| |
Collapse
|
9
|
Hashim KN, Chin KY, Ahmad F. The Mechanism of Kelulut Honey in Reversing Metabolic Changes in Rats Fed with High-Carbohydrate High-Fat Diet. Molecules 2023; 28:2790. [PMID: 36985762 PMCID: PMC10056699 DOI: 10.3390/molecules28062790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Metabolic syndrome (MetS) is composed of central obesity, hyperglycemia, dyslipidemia and hypertension that increase an individual's tendency to develop type 2 diabetes mellitus and cardiovascular diseases. Kelulut honey (KH) produced by stingless bee species has a rich phenolic profile. Recent studies have demonstrated that KH could suppress components of MetS, but its mechanisms of action are unknown. A total of 18 male Wistar rats were randomly divided into control rats (C group) (n = 6), MetS rats fed with a high carbohydrate high fat (HCHF) diet (HCHF group) (n = 6), and MetS rats fed with HCHF diet and treated with KH (HCHF + KH group) (n = 6). The HCHF + KH group received 1.0 g/kg/day KH via oral gavage from week 9 to 16 after HCHF diet initiation. Compared to the C group, the MetS group experienced a significant increase in body weight, body mass index, systolic (SBP) and diastolic blood pressure (DBP), serum triglyceride (TG) and leptin, as well as the area and perimeter of adipocyte cells at the end of the study. The MetS group also experienced a significant decrease in serum HDL levels versus the C group. KH supplementation reversed the changes in serum TG, HDL, leptin, adiponectin and corticosterone levels, SBP, DBP, as well as adipose tissue 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) level, area and perimeter at the end of the study. In addition, histological observations also showed that KH administration reduced fat deposition within hepatocytes, and prevented deterioration of pancreatic islet and renal glomerulus. In conclusion, KH is effective in preventing MetS by suppressing leptin, corticosterone and 11βHSD1 levels while elevating adiponectin levels.
Collapse
Affiliation(s)
- Khairun-Nisa Hashim
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Hirsutidin Prevents Cisplatin-Evoked Renal Toxicity by Reducing Oxidative Stress/Inflammation and Restoring the Endogenous Enzymatic and Non-Enzymatic Level. Biomedicines 2023; 11:biomedicines11030804. [PMID: 36979784 PMCID: PMC10045162 DOI: 10.3390/biomedicines11030804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Recent research has shown that phytocomponents may be useful in the treatment of renal toxicity. This study was conducted to evaluate the renal disease hirsutidin in the paradigm of renal toxicity induced by cisplatin. Male Wistar rats were given cisplatin (3 mg/kg body weight/day, for 25 days, i.p.) to induce renal toxicity. Experimental rats were randomly allocated to four different groups: group I received saline, group II received cisplatin, group III received cisplatin + hirsutidin (10 mg/kg)and group IV (per se)received hirsutidin (10 m/kg)for 25 days. Various biochemical parameters were assessed, oxidative stress (superoxide dismutase (SOD), glutathione transferase (GSH), malonaldehyde (MDA) and catalase (CAT)), blood-chemistry parameters (blood urea nitrogen (BUN) and cholesterol), non-protein-nitrogenous components (uric acid, urea, and creatinine), and anti-inflammatory-tumor necrosis factor-α (TNF-α), interleukin-1β(IL-1β). IL-6 and nuclear factor-kB (NFκB) were evaluated and histopathology was conducted. Hirsutidin alleviated renal injury which was manifested by significantly diminished uric acid, urea, urine volume, creatinine, and BUN, compared to the cisplatin group. Hirsutidin restored the activities of several antioxidant enzyme parameters—MDA, CAT, GSH, and SOD. Additionally, there was a decline in the levels of inflammatory markers—TNF-α, IL-1β, IL-6, and NFκB—compared to the cisplatin group. The current research study shows that hirsutidin may act as a therapeutic agent for the treatment of nephrotoxicity induced by cisplatin.
Collapse
|
11
|
Rahimi Monfared S, Valibeik A, Jafaripour L, Eslamifar Z, Veiskarami S, Ahmadvand H. Role of cineole in alleviation of acute kidney injury and renal function recovery following gentamicin administration in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:504-510. [PMID: 37051098 PMCID: PMC10083827 DOI: 10.22038/ijbms.2023.68430.14944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
Objectives Gentamicin leads to kidney failure by producing free radicals and inflammation in renal tissue. Cineole as a terpenoid has antioxidant properties. Antioxidants can play an effective role in preserving the oxidant-antioxidant balance. Hence, this study investigated the effects of cineole on acute kidney injury (AKI) and renal function recovery following gentamicin administration in rats. Materials and Methods 36 male Wistar rats were randomly divided into 6 equal groups; healthy control, gentamicin, DMSO carriers, cineole 50, cineole 100, and vitamin E. After 12 days of treatment, the animals were anesthetized with ketamine and xylazine. Serum and kidney samples were taken for biochemical and gene expression experiments. Results Cineole 50 and 100 groups increased the levels of serum glutathione (GSH) (<0.05), kidney and serum glutathione peroxidase (GPX) (<0.001), kidney catalase (CAT) (<0.001), serum nitric oxide (NO) (<0.001), and the GPX gene (<0.05) compared with the gentamicin group. These treatment groups had decreased levels of kidney malondialdehyde (MDA) (<0.001), serum creatinine (<0.001), urine protein, and the Interleukin 6 (IL-6) gene (<0.05) compared with the gentamicin group. Cineole 50 increased the serum MDA (<0.001), urea, and CAT gene (>0.05) and decreased the kidney GSH (<0.05) and the tumor necrosis factor-alpha (TNF-α) gene (<0.05). Cineole 100 increased the kidney GSH (<0.05) and decreased the serum MDA (<0.001), urea, CAT gene (>0.05), and TNF-α gene (>0.05) compared with the gentamicin group. Improvement in histological alterations was displayed in cineole groups compared with the gentamicin group. Conclusion Cineole can reduce kidney damage caused by nephrotoxicity following gentamicin consumption through its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Sobhan Rahimi Monfared
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Valibeik
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Zahra Eslamifar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Saeed Veiskarami
- Lorestan Agricultural and Natural Resources Research and Education Center, Department of Animal Science, Khorramabad, Iran
| | - Hassan Ahmadvand
- Medical Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Silva RLDS, Lins TLBG, Monte APOD, de Andrade KO, de Sousa Barberino R, da Silva GAL, Campinho DDSP, Junior RCP, Matos MHTD. Protective effect of gallic acid on doxorubicin-induced ovarian toxicity in mouse. Reprod Toxicol 2023; 115:147-156. [PMID: 36572231 DOI: 10.1016/j.reprotox.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The aims of the present study were to evaluate the protective effects of gallic acid against doxorubicin-induced ovarian toxicity in mice, and to verify the possible involvement of PI3K and mTOR signaling pathway members (PTEN, Akt, FOXO3a and rpS6) in the gallic acid protective actions. Mice were pretreated with NaCl (0.15 M, p.o.) (control and doxorubicin groups) or gallic acid (50, 100 or 200 mg/kg body weight, p.o.) once daily, for 5 days, and on the third day of treatment, after 1 h of treatment administration, the mice received saline solution (i.p.) (control group) or doxorubicin (10 mg/kg of body weight, i.p.). Next, the ovaries were harvested for histological (follicular morphology and activation), fluorescence (GSH and mitochondrial activity), and immunohistochemical (PCNA, cleaved caspase-3, TNF-α, p-PTEN, Akt, p-Akt, p-rpS6 and p-FOXO3a) analyses. The results showed that cotreatment with 50 mg/kg gallic acid plus doxorubicin preserved the percentage of normal follicles and cell proliferation, reduced the percentage of cleaved caspase-3 follicles, prevented inflammation, and increased GSH concentrations and mitochondrial activity compared to doxorubicin treatment alone. Furthermore, cotreatment 50 mg/kg gallic acid plus doxorrubicin increased expression of Akt, p-Akt, p-rpS6 and p-FOXO3a compared to the doxorubicin alone. In conclusion, 50 mg/kg gallic acid protects the mouse ovary against doxorubicin-induced damage by improving GSH concentrations and mitochondrial activity and cellular proliferation, inhibiting inflammation and apoptosis, and regulating PI3K and mTOR signaling pathway.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Thae Lanne Barbosa Gama Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Alane Pains Oliveira do Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Kíscyla Oliveira de Andrade
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Gizele Augusta Lemos da Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Daniela da Silva Pereira Campinho
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Raimundo Campos Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley, Petrolina 56300-900, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil.
| |
Collapse
|
13
|
Basist P, Zahiruddin S, Khan MU, Gautam G, Jan B, Khan MA, Parveen R, Ahmad S. Metabolite profiling and nephroprotective potential of Glycyrrhiza glabra L. roots against cisplatin-induced nephrotoxicity in vitro and in vivo. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1286-1298. [PMID: 36474572 PMCID: PMC9699950 DOI: 10.22038/ijbms.2022.65478.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The present study was conducted to investigate the phytochemical analysis and demonstrate the nephroprotective potential of root extract of Glycyrrhiza glabra L. against cisplatin (CP) -induced nephrotoxicity in vitro and in vivo. MATERIALS AND METHODS The HPTLC analysis and UPLC-MS were carried out for standardizing and metabolite profiling of methanolic extract of roots of G. glabra (GGE). Further, in vitro studies were conducted in human embryonic kidney (HEK)-293 cells to evaluate the cytotoxicity and anti-oxidant potential of GGE with CP as a toxicant and ascorbic acid as standard. Also, in vivo nephroprotective potential at doses of 31.5, 63, and 126 mg/kg/day on CP (6 mg/kg, bw, IP) induced nephrotoxicity was evaluated on rodents. RESULTS Phytochemical analysis by HPTLC and UPLC-MS revealed the presence of glycyrrhizin, glabridin, and liquiritin along with other bioactive constituents. The in vitro assay of GGE showed significant (P<0.001 nephroprotective, cellular anti-oxidant potential and improvement in morphological changes induced by CP. Further, administration of CP caused significant (P<0.001) elevation in biochemical, inflammatory, oxidative stress, caspase-3, as well as histopathological changes in kidney tissue. Pre-treatment with GGE attenuated the elevated biochemical markers significantly, improved histopathological damage, and showed a comparable result to ascorbic acid and α-ketoanalogue. CONCLUSION Present study concluded the nephroprotective potential of GGE which supports the traditional claim of G. glabra roots in various kidney and its related disorders. The nephroprotective activity may be attributed to its anti-oxidant, anti-inflammatory, and anti-apoptosis effects. Thus, it holds promising potential in management of nephrotoxicity.
Collapse
Affiliation(s)
- Parakh Basist
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Jamia Hamdard, New Delhi, India-110062,Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062
| | - Sultan Zahiruddin
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Jamia Hamdard, New Delhi, India-110062,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062
| | - Mohammad Umar Khan
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Jamia Hamdard, New Delhi, India-110062,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062,Department of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi, India-110062
| | - Gaurav Gautam
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Jamia Hamdard, New Delhi, India-110062,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062
| | - Bisma Jan
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Jamia Hamdard, New Delhi, India-110062,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062,Department of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi, India-110062
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Jamia Hamdard, New Delhi, India-110062,Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062,Corresponding author: Sayeed Ahmad. Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India-110062; Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Jamia Hamdard, New Delhi, India-110062. Tel: +91-8587883147; Fax: +91-11-26059663;
| |
Collapse
|
14
|
The Effect of Thyme Essential Oil on Liver Injuries Caused by Renal Ischemia-Reperfusion in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2988334. [PMID: 36337844 PMCID: PMC9629959 DOI: 10.1155/2022/2988334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Liver damage occurs following renal ischemia-reperfusion (RIR) that can cause inflammation and inflammatory cytokines activated after kidney injury. In this study, thyme essential oil (TE) with antioxidant and anti-inflammatory properties was used to reduce liver damage induced by renal IR. 32 male rats were randomly divided into 4 equal groups: (1) control, (2) RIR, (3) RIR+TE, and (4) TE. Rats received TE as a pretreatment at a dose of 0.5 ml/kg for one week. Then, under anesthesia for 45 minutes for ischemia, the kidneys of the animals were closed with clamps, and reperfusion was performed for 24 hours. Animal serum was isolated to evaluate alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) parameters. The liver of rats was examined for the measurement of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), and expression of genes such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and caspase-3. ALP, AST, ALT, MDA, NO, IL-6, TNF-α, and caspase-3 increased significantly in the RIR group compared to the control group (p < 0.05). GSH, GPX, and CAT decreased significantly in the RIR group compared to the control group (p < 0.05). TE caused a decrease in ALP, AST, ALT, MDA, NO, IL-6, and TNF-α compared to the RIR group and caused an increase in the amount of GSH, GPX, and CAT in the RIR group (p < 0.05). This study showed that TE has antioxidant and anti-inflammatory properties that reduce liver damage induced by RIR.
Collapse
|
15
|
Cisplatin-Induced Kidney Toxicity: Potential Roles of Major NAD +-Dependent Enzymes and Plant-Derived Natural Products. Biomolecules 2022; 12:biom12081078. [PMID: 36008971 PMCID: PMC9405866 DOI: 10.3390/biom12081078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is an FDA approved anti-cancer drug that is widely used for the treatment of a variety of solid tumors. However, the severe adverse effects of cisplatin, particularly kidney toxicity, restrict its clinical and medication applications. The major mechanisms of cisplatin-induced renal toxicity involve oxidative stress, inflammation, and renal fibrosis, which are covered in this short review. In particular, we review the underlying mechanisms of cisplatin kidney injury in the context of NAD+-dependent redox enzymes including mitochondrial complex I, NAD kinase, CD38, sirtuins, poly-ADP ribosylase polymerase, and nicotinamide nucleotide transhydrogenase (NNT) and their potential contributing roles in the amelioration of cisplatin-induced kidney injury conferred by natural products derived from plants. We also cover general procedures used to create animal models of cisplatin-induced kidney injury involving mice and rats. We highlight the fact that more studies will be needed to dissect the role of each NAD+-dependent redox enzyme and its involvement in modulating cisplatin-induced kidney injury, in conjunction with intensive research in NAD+ redox biology and the protective effects of natural products against cisplatin-induced kidney injury.
Collapse
|