1
|
Daanial Khan Y, Alkhalifah T, Alturise F, Hassan Butt A. DeepDBS: Identification of DNA-binding sites in protein sequences by using deep representations and random forest. Methods 2024; 231:26-36. [PMID: 39270885 DOI: 10.1016/j.ymeth.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Interactions of biological molecules in organisms are considered to be primary factors for the lifecycle of that organism. Various important biological functions are dependent on such interactions and among different kinds of interactions, the protein DNA interactions are very important for the processes of transcription, regulation of gene expression, DNA repairing and packaging. Thus, keeping the knowledge of such interactions and the sites of those interactions is necessary to study the mechanism of various biological processes. As experimental identification through biological assays is quite resource-demanding, costly and error-prone, scientists opt for the computational methods for efficient and accurate identification of such DNA-protein interaction sites. Thus, herein, we propose a novel and accurate method namely DeepDBS for the identification of DNA-binding sites in proteins, using primary amino acid sequences of proteins under study. From protein sequences, deep representations were computed through a one-dimensional convolution neural network (1D-CNN), recurrent neural network (RNN) and long short-term memory (LSTM) network and were further used to train a Random Forest classifier. Random Forest with LSTM-based features outperformed the other models, as well as the existing state-of-the-art methods with an accuracy score of 0.99 for self-consistency test, 10-fold cross-validation, 5-fold cross-validation, and jackknife validation while 0.92 for independent dataset testing. It is concluded based on results that the DeepDBS can help accurate and efficient identification of DNA binding sites (DBS) in proteins.
Collapse
Affiliation(s)
- Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Punjab 54770, Pakistan
| | - Tamim Alkhalifah
- Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudi Arabia
| | - Fahad Alturise
- Department of Cybersecurity, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia
| | - Ahmad Hassan Butt
- Department of Computer Science, Faculty of Computing and Information Technology, University of the Punjab, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
2
|
Naseem A, Khan YD. An intelligent model for prediction of abiotic stress-responsive microRNAs in plants using statistical moments based features and ensemble approaches. Methods 2024; 228:65-79. [PMID: 38768931 DOI: 10.1016/j.ymeth.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
This study proposed an intelligent model for predicting abiotic stress-responsive microRNAs in plants. MicroRNAs (miRNAs) are short RNA molecules regulates the stress in genes. Experimental methods are costly and time-consuming, as compare to in-silico prediction. Addressing this gap, the study seeks to develop an efficient computational model for plant stress response prediction. The two benchmark datasets for MiRNA and Pre-MiRNA dataset have been acquired in this study. Four ensemble approaches such as bagging, boosting, stacking, and blending have been employed. Classifiers such as Random Forest (RF), Extra Trees (ET), Ada Boost (ADB), Light Gradient Boosting Machine (LGBM), and Support Vector Machine (SVM). Stacking and Blending employed all stated classifiers as base learners and Logistic Regression (LR) as Meta Classifier. There have been a total of four types of testing used, including independent set, self-consistency, cross-validation with 5 and 10 folds, and jackknife. This study has utilized evaluation metrics such as accuracy score, specificity, sensitivity, Mathew's correlation coefficient (MCC), and AUC. Our proposed methodology has outperformed existing state of the art study in both datasets based on independent set testing. The SVM-based approach has exhibited accuracy score of 0.659 for the MiRNA dataset, which is better than the previous study. The ET classifier has surpassed the accuracy of Pre-MiRNA dataset as compared to the existing benchmark study, achieving an impressive score of 0.67. The proposed method can be used in future research to predict abiotic stresses in plants.
Collapse
Affiliation(s)
- Ansar Naseem
- Department of Artificial Intelligence, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
3
|
Hassan A, Alkhalifah T, Alturise F, Khan YD. RCCC_Pred: A Novel Method for Sequence-Based Identification of Renal Clear Cell Carcinoma Genes through DNA Mutations and a Blend of Features. Diagnostics (Basel) 2022; 12:diagnostics12123036. [PMID: 36553042 PMCID: PMC9776995 DOI: 10.3390/diagnostics12123036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
To save lives from cancer, it is very crucial to diagnose it at its early stages. One solution to early diagnosis lies in the identification of the cancer driver genes and their mutations. Such diagnostics can substantially minimize the mortality rate of this deadly disease. However, concurrently, the identification of cancer driver gene mutation through experimental mechanisms could be an expensive, slow, and laborious job. The advancement of computational strategies that could help in the early prediction of cancer growth effectively and accurately is thus highly needed towards early diagnoses and a decrease in the mortality rates due to this disease. Herein, we aim to predict clear cell renal carcinoma (RCCC) at the level of the genes, using the genomic sequences. The dataset was taken from IntOgen Cancer Mutations Browser and all genes' standard DNA sequences were taken from the NCBI database. Using cancer-associated information of mutation from INTOGEN, the benchmark dataset was generated by creating the mutations in original sequences. After extensive feature extraction, the dataset was used to train ANN+ Hist Gradient boosting that could perform the classification of RCCC genes, other cancer-associated genes, and non-cancerous/unknown (non-tumor driver) genes. Through an independent dataset test, the accuracy observed was 83%, whereas the 10-fold cross-validation and Jackknife validation yielded 98% and 100% accurate results, respectively. The proposed predictor RCCC_Pred is able to identify RCCC genes with high accuracy and efficiency and can help scientists/researchers easily predict and diagnose cancer at its early stages.
Collapse
Affiliation(s)
- Arfa Hassan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 58892, Qassim, Saudi Arabia
- Correspondence:
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 58892, Qassim, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| |
Collapse
|
4
|
Suleman MT, Khan YD. m1A-pred: Prediction of Modified 1-methyladenosine Sites in RNA Sequences through Artificial Intelligence. Comb Chem High Throughput Screen 2022; 25:2473-2484. [PMID: 35718969 DOI: 10.2174/1386207325666220617152743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The process of nucleotides modification or methyl groups addition to nucleotides is known as post-transcriptional modification (PTM). 1-methyladenosine (m1A) is a type of PTM formed by adding a methyl group to the nitrogen at the 1st position of the adenosine base. Many human disorders are associated with m1A, which is widely found in ribosomal RNA and transfer RNA. OBJECTIVE The conventional methods such as mass spectrometry and site-directed mutagenesis proved to be laborious and burdensome. Systematic identification of modified sites from RNA sequences is gaining much attention nowadays. Consequently, an extreme gradient boost predictor, m1A-Pred, is developed in this study for the prediction of modified m1A sites. METHODS The current study involves the extraction of position and composition-based properties within nucleotide sequences. The extraction of features helps in the development of the features vector. Statistical moments were endorsed for dimensionality reduction in the obtained features. RESULTS Through a series of experiments using different computational models and evaluation methods, it was revealed that the proposed predictor, m1A-pred, proved to be the most robust and accurate model for the identification of modified sites. AVAILABILITY AND IMPLEMENTATION To enhance the research on m1A sites, a friendly server was also developed, which was the final phase of this research.
Collapse
Affiliation(s)
- Muhammad Taseer Suleman
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
5
|
Alghamdi W, Attique M, Alzahrani E, Ullah MZ, Khan YD. LBCEPred: a machine learning model to predict linear B-cell epitopes. Brief Bioinform 2022; 23:6543896. [PMID: 35262658 DOI: 10.1093/bib/bbac035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023] Open
Abstract
B-cell epitopes have the capability to recognize and attach to the surface of antigen receptors to stimulate the immune system against pathogens. Identification of B-cell epitopes from antigens has a great significance in several biomedical and biotechnological applications, provides support in the development of therapeutics, design and development of an epitope-based vaccine and antibody production. However, the identification of epitopes with experimental mapping approaches is a challenging job and usually requires extensive laboratory efforts. However, considerable efforts have been placed for the identification of epitopes using computational methods in the recent past but deprived of considerable achievements. In this study, we present LBCEPred, a python-based web-tool (http://lbcepred.pythonanywhere.com/), build with random forest classifier and statistical moment-based descriptors to predict the B-cell epitopes from the protein sequences. LBECPred outperforms all sequence-based available models that are currently in use for the B-cell epitopes prediction, with 0.868 accuracy value and 0.934 area under the curve. Moreover, the prediction performance of proposed models compared to other state-of-the-art models is 56.3% higher on average for Mathews Correlation Coefficient. LBCEPred is easy to use tool even for novice users and has also shown the models stability and reliability, thus we believe in its significant contribution to the research community and the area of bioinformatics.
Collapse
Affiliation(s)
- Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 80221, Jeddah, Saudi Arabia
| | - Muhammad Attique
- Department of Computer Science, University of Management and Technology, Lahore, 54000, Pakistan.,Department of Information Technology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Ebraheem Alzahrani
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Malik Zaka Ullah
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and Technology, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Shahid M, Ilyas M, Hussain W, Khan YD. ORI-Deep: improving the accuracy for predicting origin of replication sites by using a blend of features and long short-term memory network. Brief Bioinform 2022; 23:6511972. [PMID: 35048955 DOI: 10.1093/bib/bbac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 11/14/2022] Open
Abstract
Replication of DNA is an important process for the cell division cycle, gene expression regulation and other biological evolution processes. It also has a crucial role in a living organism's physical growth and structure. Replication of DNA comprises of three stages known as initiation, elongation and termination, whereas the origin of replication sites (ORI) is the location of initiation of the DNA replication process. There exist various methodologies to identify ORIs in the genomic sequences, however, these methods have used either extensive computations for execution, or have limited optimization for the large datasets. Herein, a model called ORI-Deep is proposed to identify ORIs from the multiple cell type genomic sequence benchmark data. An efficient method is proposed using a deep neural network to identify ORIs for four different eukaryotic species. For better representation of data, a feature vector is constructed using statistical moments for the training and testing of data and is further fed to a long short-term memory (LSTM) network. To prove the effectiveness of the proposed model, we applied several validation techniques at different levels to obtain seven accuracy metrics, and the accuracy score for self-consistency, 10-fold cross-validation, jackknife and the independent set test is observed to be 0.977, 0.948, 0.976 and 0.977, respectively. Based on the results, it can be concluded that ORI-Deep can efficiently predict the sites of origin replication in DNA sequence with high accuracy. Webserver for ORI-Deep is available at (https://share.streamlit.io/waqarhusain/orideep/main/app.py), whereas source code is available at (https://github.com/WaqarHusain/OriDeep).
Collapse
Affiliation(s)
- Mahwish Shahid
- School of Systems and Technologies, University of Management and Technology, Lahore, Pakistan
| | - Maham Ilyas
- University of Management and Technology, Lahore, Pakistan
| | - Waqar Hussain
- University of Management and Technology, Lahore, Pakistan
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
7
|
Shah AA, Alturise F, Alkhalifah T, Khan YD. Evaluation of deep learning techniques for identification of sarcoma-causing carcinogenic mutations. Digit Health 2022; 8:20552076221133703. [PMID: 36312852 PMCID: PMC9597026 DOI: 10.1177/20552076221133703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
The abnormal growth of human healthy cells is called cancer. One of the major types of cancer is sarcoma, mostly found in human bones and soft tissue cells. It commonly occurs in children. According to a survey of the United States of America, there are more than 17,000 sarcoma patients registered each year which is 15% of all cancer cases. Recognition of cancer at its early stage saves many lives. The proposed study developed a framework for the early detection of human sarcoma cancer using deep learning Recurrent Neural Network (RNN) algorithms. The DNA of a human cell is made up of 25,000 to 30,000 genes. Each gene is represented by sequences of nucleotides. The nucleotides in a sequence of a driver gene can change which is termed as mutations. Some mutations can cause cancer. There are seven types of a gene whose mutation causes sarcoma cancer. The study uses the dataset which has been taken from more than 134 samples and includes 141 mutations in 8 driver genes. On these gene sequences RNN algorithms Long and Short-Term Memory (LSTM), Gated Recurrent Units and Bi-directional LSTM (Bi-LSTM) are used for training. Rigorous testing techniques such as Self-consistency testing, independent set testing, 10-fold cross-validation test are applied for the validation of results. These validation techniques yield several metrics such as Area Under the Curve (AUC), sensitivity, specificity, Mathew's correlation coefficient, loss, and accuracy. The proposed algorithm exhibits an accuracy of 99.6% with an AUC value of 1.00.
Collapse
Affiliation(s)
- Asghar Ali Shah
- Department of Computer Science, University of Management and
Technology, Lahore, Pakistan
- Department of Computer Sciences, Bahria University Lahore Campus, Lahore, Pakistan
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and
Technology, Lahore, Pakistan
| |
Collapse
|