1
|
Yang X, Li Y, Lee JZ, Sun Y, Tan X, Liu Y, Yu Y, Li H, Li X. A Highly Sensitive Dual-Drive Microfluidic Device for Multiplexed Detection of Respiratory Virus Antigens. MICROMACHINES 2024; 15:685. [PMID: 38930655 PMCID: PMC11206039 DOI: 10.3390/mi15060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Conventional microfluidic systems that rely on capillary force have a fixed structure and limited sensitivity, which cannot meet the demands of clinical applications. Herein, we propose a dual-drive microfluidic device for sensitive and flexible detection of multiple pathogenic microorganisms antigens/antibodies. The device comprises a portable microfluidic analyzer and a dual-drive microfluidic chip. Along with capillary force, a second active driving force is provided by a removable self-driving valve in the waste chamber. The interval between these two driving forces can be adjusted to control the reaction time in the microchannel, optimizing the formation of antigen-antibody complexes and enhancing sensitivity. Moreover, the material used in the self-driving valve can be changed to adjust the active force strength needed for different tests. The device offers quantitative analysis for respiratory syncytial virus antigen and SARS-CoV-2 antigen using a 35 μL sample, delivering results within 5 min. The detection limits of the system were 1.121 ng/mL and 0.447 ng/mL for respiratory syncytial virus recombinant fusion protein and SARS-CoV-2 recombinant nucleoprotein, respectively. Although the dual-drive microfluidic device has been used for immunoassay for respiratory syncytial virus and SARS-CoV-2 in this study, it can be easily adapted to other immunoassay applications by changing the critical reagents.
Collapse
Affiliation(s)
- Xiaohui Yang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China; (X.Y.); (Y.L.); (Y.S.); (X.T.); (Y.Y.); (H.L.)
| | - Yixian Li
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China; (X.Y.); (Y.L.); (Y.S.); (X.T.); (Y.Y.); (H.L.)
| | - Josh Zixi Lee
- Beijing MicVic Biotech Co., Ltd., Beijing 101200, China; (J.Z.L.); (Y.L.)
| | - Yuanmin Sun
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China; (X.Y.); (Y.L.); (Y.S.); (X.T.); (Y.Y.); (H.L.)
| | - Xin Tan
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China; (X.Y.); (Y.L.); (Y.S.); (X.T.); (Y.Y.); (H.L.)
| | - Yijie Liu
- Beijing MicVic Biotech Co., Ltd., Beijing 101200, China; (J.Z.L.); (Y.L.)
| | - Yang Yu
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China; (X.Y.); (Y.L.); (Y.S.); (X.T.); (Y.Y.); (H.L.)
| | - Huiqiang Li
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China; (X.Y.); (Y.L.); (Y.S.); (X.T.); (Y.Y.); (H.L.)
| | - Xue Li
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China; (X.Y.); (Y.L.); (Y.S.); (X.T.); (Y.Y.); (H.L.)
| |
Collapse
|
2
|
Zeng Y, Gan X, Xu Z, Hu X, Hu C, Ma H, Tu H, Chai B, Yang C, Hu S, Chai Y. AIEgens-enhanced rapid sensitive immunofluorescent assay for SARS-CoV-2 with digital microfluidics. Anal Chim Acta 2024; 1298:342398. [PMID: 38462346 DOI: 10.1016/j.aca.2024.342398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Sensitive and rapid antigen detection is critical for the diagnosis and treatment of infectious diseases, but conventional ELISAs including chemiluminescence-based assays are limited in sensitivity and require many operation steps. Fluorescence immunoassays are fast and convenient but often show limited sensitivity and dynamic range. RESULTS To address the need, an aggregation-induced emission fluorgens (AIEgens) enhanced immunofluorescent assay with beads-based quantification on the digital microfluidic (DMF) platform was developed. Portable DMF devices and chips with small electrodes were fabricated, capable of manipulating droplets within 100 nL and boosting the reaction efficiency. AIEgen nanoparticles (NPs) with high fluorescence and photostability were synthesized to enhance the test sensitivity and detection range. The integration of AIEgen probes, transparent DMF chip design, and the large magnetic beads (10 μm) as capture agents enabled rapid and direct image-taking and signal calculation of the test result. The performance of this platform was demonstrated by point-of-care quantification of SARS-CoV-2 nucleocapsid (N) protein. Within 25 min, a limit of detection of 5.08 pg mL-1 and a limit of quantification of 8.91 pg mL-1 can be achieved using <1 μL sample. The system showed high reproducibility across the wide dynamic range (10-105 pg mL-1), with the coefficient of variance ranging from 2.6% to 9.8%. SIGNIFICANCE This rapid, sensitive AIEgens-enhanced immunofluorescent assay on the DMF platform showed simplified reaction steps and improved performance, providing insight into the small-volume point-of-care testing of different biomarkers in research and clinical applications.
Collapse
Affiliation(s)
- Yuping Zeng
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Xiangyu Gan
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Zhourui Xu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Xiaoxiang Hu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong province, China.
| | - Hangjia Tu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China; Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China.
| | - Chengbin Yang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Yujuan Chai
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
3
|
Ren K, Xie Y, Wang C, Yan J, Shi Y, Guo J, Guo J. Application of the fuzzy proportional integral differential (PID) temperature control algorithm in a liver function test system based on a centrifugal microfluidic device. Talanta 2024; 268:125330. [PMID: 37879203 DOI: 10.1016/j.talanta.2023.125330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Clinical laboratory examinations frequently include biochemical analysis of the liver. The presence of alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum can be used to identify liver damage. In this study, a centrifugal microfluidic-based clinical biochemical detection system was developed for the detection of liver function markers. Using the centrifugal microfluidic chip and centrifugal force on the chip, separation of blood cells and serum was performed. The extraction and mixing of quantitative serum and diluent were completed under the chip design of microchannels and microchambers. The lyophilized reagent beads in the chip interacted with the combined solution. The Fuzzy PID algorithm regulates the power of the heating film to deliver the ideal reaction temperature. In accordance with Beer-Lambert, the rate of change in the absorbance of the reaction solution at 340 nm of the light source was measured and a standard curve for the relationship between concentration and rate of change in absorbance was constructed. The system is portable, quick, and simple to use because it uses a centrifugal microfluidic chip instead of the conventional detection and analysis approach. In the future, it is anticipated that the system will have several applications in the detection of highly integrated on-chip point-of-care devices.
Collapse
Affiliation(s)
- Keyi Ren
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, China
| | - Yiweng Xie
- School of Computer Science, Fudan University, Shanghai, 200433, China
| | - Chuang Wang
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiasheng Yan
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuxing Shi
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, China; University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
4
|
Amle S, Radford S, Wang Z, Bronsart L, Mohanty P, Renu S, Shank-Retzlaff M. Use of capillary-mediated vitrification to produce thermostable, single-use antibody conjugates as immunoassay reagents. J Immunol Methods 2023; 516:113460. [PMID: 36967060 DOI: 10.1016/j.jim.2023.113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The performance of enzyme-linked immunoassays is directly dependent on the storage, handling, and long-term stability of the critical reagents used in the assay. Currently, antibody reagents are routinely stored as concentrated, multi-use, frozen aliquots. This practice results in material waste, adds complexity to laboratory workflows, and can compromise reagents via cross-contamination and freeze-thaw damage. While refrigeration or freezing can slow down many degradation processes, the freezing process itself can have damaging effects, including introduction of aggregation and microheterogeneity. To address these challenges, we evaluated the application of capillary-mediated vitrification (CMV) as a tool for storing antibody reagents in a thermostable, single-use format. CMV is a novel biopreservation method that enables vitrification of biological materials without freezing. Using an anti-human IgG-alkaline phosphatase conjugate as a model system, we prepared CMV-stabilized aliquots which were stored in a single-use format at temperatures ranging from 25 to 55 °C for up to 3 months. Each stabilized aliquot contained enough antibody to perform a single assay run. We evaluated the assay performance and functional stability of the CMV-stabilized reagents using a plate-based ELISA. Assays run using the CMV stabilized reagents exhibited good linearity and precision that was comparable to results obtained with a frozen control. Throughout the stability study, the maximum signal and EC50s observed for ELISAs run using CMV-stabilized reagents were generally consistent with those obtained using a frozen control. These results indicate that the CMV process has the potential to improve both reagent stability and long-term assay performance, while also reducing reagent waste and simplifying assay workflows.
Collapse
|
5
|
Ji Y, Cai G, Liang C, Gao Z, Lin W, Ming Z, Feng S, Zhao H. A microfluidic immunosensor based on magnetic separation for rapid detection of okadaic acid in marine shellfish. Anal Chim Acta 2023; 1239:340737. [PMID: 36628732 DOI: 10.1016/j.aca.2022.340737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Okadaic acid (OA) is a marine biotoxin that accumulates in seafood and can cause diarrheic shellfish poisoning if consumed. Accordingly, many countries have established regulatory limits for the content of OA in shellfish. At present, methods used for the detection of marine toxins are time-consuming and labor-intensive. In order to realize rapid, simple, and accurate detection of OA, we developed a novel microfluidic immunosensor based on magnetic beads modified with a highly specific and sensitive monoclonal antibody (mAb) against OA that is used in conjunction with smartphone imaging to realize the rapid detection of OA in shellfish. The method achieves on-site detection results within 1 h with an IC50 value of 3.30 ng/mL for OA and a limit of detection (LOD) of 0.49 ng/mL. In addition, the analysis of real samples showed that the recoveries for spiked shellfish samples ranged from 84.91% to 95.18%, and the results were confirmed by indirect competitive enzyme-linked immunosorbent assay (icELISA), indicating that the method has good accuracy and precision. Furthermore, the results are reported in a specially designed smartphone app. The microfluidic immunosensor has the advantages of simple operation, rapid detection, and high sensitivity, providing a reliable technical solution for detecting OA residues in shellfish.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Cheng Liang
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, 510150, China
| | - Weimin Lin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Zizhen Ming
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Saviñon-Flores AI, Saviñon-Flores F, Trejo G, Méndez E, Ţălu Ş, González-Fuentes MA, Méndez-Albores A. A review of cardiac troponin I detection by surface enhanced Raman spectroscopy: Under the spotlight of point-of-care testing. Front Chem 2022; 10:1017305. [PMID: 36311415 PMCID: PMC9608872 DOI: 10.3389/fchem.2022.1017305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiac troponin I (cTnI) is a biomarker widely related to acute myocardial infarction (AMI), one of the leading causes of death around the world. Point-of-care testing (POCT) of cTnI not only demands a short turnaround time for its detection but the highest accuracy levels to set expeditious and adequate clinical decisions. The analytical technique Surface-enhanced Raman spectroscopy (SERS) possesses several properties that tailor to the POCT format, such as its flexibility to couple with rapid assay platforms like microfluidics and paper-based immunoassays. Here, we analyze the strategies used for the detection of cTnI by SERS considering POCT requirements. From the detection ranges reported in the reviewed literature, we suggest the diseases other than AMI that could be diagnosed with this technique. For this, a section with information about cardiac and non-cardiac diseases with cTnI release, including their release kinetics or cut-off values are presented. Likewise, POCT features, the use of SERS as a POCT technique, and the biochemistry of cTnI are discussed. The information provided in this review allowed the identification of strengths and lacks of the available SERS-based point-of-care tests for cTnI and the disclosing of requirements for future assays design.
Collapse
Affiliation(s)
- Anel I. Saviñon-Flores
- Centro de Química-ICUAP- Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - G. Trejo
- Laboratory of Composite Materials and Functional Coatings, Center for Research and Technological Development in Electrochemistry (CIDETEQ), Querétaro, Mexico
| | - Erika Méndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ştefan Ţălu
- Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Cluj-Napoca, Romania
| | - Miguel A. González-Fuentes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel A. González-Fuentes, ; Alia Méndez-Albores,
| | - Alia Méndez-Albores
- Centro de Química-ICUAP- Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel A. González-Fuentes, ; Alia Méndez-Albores,
| |
Collapse
|
7
|
Nix C, Ghassemi M, Crommen J, Fillet M. Overview on microfluidics devices for monitoring brain disorder biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|