1
|
Li F, Guo L, Zhou M, Han L, Wu S, Wu L, Yang J. Cryptochrome 2 Suppresses Epithelial-Mesenchymal Transition by Promoting Trophoblastic Ferroptosis in Unexplained Recurrent Spontaneous Abortion. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1197-1217. [PMID: 38537935 DOI: 10.1016/j.ajpath.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Unexplained recurrent spontaneous abortion (URSA) is a serious reproductive issue that affects women of childbearing age. Studies have shown a close association between disrupted circadian rhythm and impaired epithelial-mesenchymal transition (EMT) in trophoblasts during URSA, although the underlying mechanism is not known. The current study investigated the regulatory relationship between circadian rhythm gene cryptochrome 2 (CRY2) and ferroptosis on the migratory ability of trophoblast cells. Cell proliferation experiments, wound-healing assays, and expression of related markers were conducted to study EMT. Trophoblastic ferroptosis was confirmed by the expressions of malondialdehyde, glutathione, mitochondrial membrane potential, divalent iron ions, and related genes. The results showed significant increased expression of CRY2 and decreased expression of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) in the URSA villous tissues, accompanied by iron-dependent oxidative changes and abnormal expression of ferroptosis-related proteins. CRY2 and BMAL1 were co-localized and functioned as a feedback loop, which regulated the dynamic changes of EMT-related markers in trophoblast cells. CRY2 promoted trophoblastic ferroptosis, whereas BMAL1 had the opposite effect. Particularly, the ferroptosis inhibitor (ferrostatin-1) effectively reversed the trophoblastic ferroptosis and EMT inhibition caused by CRY2 overexpression. Collectively, these results suggest that CRY2 regulates trophoblastic ferroptosis and hinders cellular EMT and migratory ability by suppressing BMAL1 expression.
Collapse
Affiliation(s)
- Faminzi Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengqi Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Lu Han
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Shujuan Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Lianzhi Wu
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University and Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| |
Collapse
|
2
|
Liu YC, Gong YT, Sun QY, Wang B, Yan Y, Chen YX, Zhang LJ, Zhang WD, Luan X. Ferritinophagy induced ferroptosis in the management of cancer. Cell Oncol (Dordr) 2024; 47:19-35. [PMID: 37713105 DOI: 10.1007/s13402-023-00858-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Ferroptosis, a newly form of regulated cell death (RCD), is characterized by iron dyshomeostasis and unrestricted lipid peroxidation. Emerging evidence depicts a pivotal role for ferroptosis in driving some pathological processes, especially in cancer. Triggering ferroptosis can suppress tumor growth and induce an anti-tumor immune response, denoting the therapeutic promises for targeting ferroptosis in the management of cancer. As an autophagic phenomenon, ferritinophagy is critical to induce ferroptosis by degradation of ferritin to release intracellular free iron. Recently, a great deal of effort has gone into designing and developing anti-cancer strategies based on targeting ferritinophagy to induce ferroptosis. CONCLUSION This review delineates the regulatory mechanism of ferritinophagy firstly and summarizes the role of ferritinophagy-induced ferroptosis in cancer. Moreover, the strategies targeting ferritinophagy to induce ferroptosis are highlighted to unveil the therapeutic value of ferritinophagy as a target to manage cancer. Finally, the future research directions on how to cope with the challenges in developing ferritinophagy promoters into clinical therapeutics are discussed.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Ting Gong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing-Yan Sun
- Shanghai Institute of Pharmaceutical Industry, Shanghai, 200040, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Xu Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Zhou ZQ, Lv X, Liu SB, Qu HC, Xie QP, Sun LF, Li G. The induction of ferroptosis by KLF11/NCOA4 axis: the inhibitory role in clear cell renal cell carcinoma. Hum Cell 2023; 36:2162-2178. [PMID: 37642832 DOI: 10.1007/s13577-023-00973-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Ferroptosis is a form of cell death and has great potential application in the treatment of many cancers, including clear cell renal cell carcinoma (ccRCC). Herein, we identified the essential roles of Krüppel-like factor 11 (KLF11) in suppressing the progression of ccRCC. By analyzing mRNA expression data from the Gene Expression Omnibus (GEO) database, we found that KLF11 was a significantly downregulated gene in ccRCC tissues. The results of subsequent functional assays verified that KLF11 played an antiproliferative role in ccRCC cells and xenograft tumors. Furthermore, gene set enrichment analysis indicated that ferroptosis was involved in ccRCC development, and correlation analysis revealed that KLF11 was positively related to ferroptosis drivers. We also found that KLF11 promoted ferroptosis in ccRCC by downregulating the protein expression of ferritin, system xc (-) cystine/glutamate antiporter (xCT), and glutathione peroxidase 4 (GPX4), acting as the inhibitory factors of ferroptosis and increasing the intracellular levels of lipid reactive oxygen species (ROS). As a transcriptional regulator, KLF11 significantly increased the promoter activity of nuclear receptor coactivator 4 (NCOA4), a gene significantly downregulated in ccRCC and whose low expression is associated with poor survival. The characteristics of ccRCC cells caused by KLF11 overexpression were reversed after NCOA4 silencing. In summary, the present study suggests that KLF11 suppresses the progression of ccRCC by increasing NCOA4 transcription. Therefore, the KLF11/NCOA4 axis may serve as a novel therapeutic target for human ccRCC.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Xi Lv
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Shi-Bo Liu
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Hong-Chen Qu
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Qing-Peng Xie
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Long-Feng Sun
- Department of Geriatric Cardiology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning Province, China.
| | - Gang Li
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Gao M, Lai K, Deng Y, Lu Z, Song C, Wang W, Xu C, Li N, Geng Q. Eriocitrin inhibits epithelial-mesenchymal transformation (EMT) in lung adenocarcinoma cells via triggering ferroptosis. Aging (Albany NY) 2023; 15:10089-10104. [PMID: 37787987 PMCID: PMC10599723 DOI: 10.18632/aging.205049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/20/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is the most prevalent pathological subtype of non-small cell lung cancer (NSCLC), characterized by a high propensity for relapse and metastasis due to epithelial-mesenchymal transition (EMT) of cancer cells. Ferroptosis, a newly discovered regulated cell death modality, is interconnected with the EMT process in certain cancers. Eriocitrin, a natural flavonoid compound, exerts anti-inflammatory and anticancer effects. OBJECTIVES The aim of this study is to investigate the potential inhibitory effect of eriocitrin on lung adenocarcinoma metastasis and explore whether its underlying mechanism involves ferroptosis induction in cancer cells. METHODS The CCK8 assay and wound healing assay and transwell were conducted to determine the cell viability and migration ability of A549 and H1299 cells, respectively. EMT process was assessed by western blot and RT-PCR to detect protein and mRNA levels of EMT markers. ROS and cell iron were measured to determine ferroptosis level. RESULTS Eriocitrin treatment significantly inhibited cell viability and migration ability in a concentration-dependent manner. Furthermore, eriocitrin administration for 24 hours resulted in enhanced expression of E-cadherin, while downregulating vimentin, N-cadherin and snail expression, indicating marked repression of the EMT process. Additionally, eriocitrin significantly induced ferroptosis in A549 and H1299 cells, as evidenced by increased ROS levels, downregulation of Nrf-2, SLC7A11 and GPX4 expression, and enhanced cellular iron accumulation. Moreover, pretreatment with the ferroptosis inhibitor ferrostatin-1 effectively abrogated the inhibitory effects of eriocitrin on EMT. CONCLUSIONS Our findings further support the anti-cancer properties of eriocitrin, as evidenced by its ability to inhibit the EMT process in LUAD cells, which is partially mediated through induction of ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kai Lai
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
5
|
Zhang R, Chen J, Wang S, Zhang W, Zheng Q, Cai R. Ferroptosis in Cancer Progression. Cells 2023; 12:1820. [PMID: 37508485 PMCID: PMC10378139 DOI: 10.3390/cells12141820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Ferroptosis is a newly discovered iron-dependent form of regulated cell death driven by phospholipid peroxidation and associated with processes including iron overload, lipid peroxidation, and dysfunction of cellular antioxidant systems. Ferroptosis is found to be closely related to many diseases, including cancer at every stage. Epithelial-mesenchymal transition (EMT) in malignant tumors that originate from epithelia promotes cancer-cell migration, invasion, and metastasis by disrupting cell-cell and cell-cell matrix junctions, cell polarity, etc. Recent studies have shown that ferroptosis appears to share multiple initiators and overlapping pathways with EMT in cancers and identify ferroptosis as a potential predictor of various cancer grades and prognoses. Cancer metastasis involves multiple steps, including local invasion of cancer cells, intravasation, survival in circulation, arrest at a distant organ site, extravasation and adaptation to foreign tissue microenvironments, angiogenesis, and the formation of "premetastatic niche". Numerous studies have revealed that ferroptosis is closely associated with cancer metastasis. From the cellular perspective, ferroptosis has been implicated in the regulation of cancer metastasis. From the molecular perspective, the signaling pathways activated during the two events interweave. This review briefly introduces the mechanisms of ferroptosis and discusses how ferroptosis is involved in cancer progression, including EMT, cancer angiogenesis, invasion, and metastasis.
Collapse
Affiliation(s)
- Rongyu Zhang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinghong Chen
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Saiyang Wang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenlong Zhang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Quan Zheng
- Center for Singl-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Role of Ferroptosis in Regulating the Epithelial-Mesenchymal Transition in Pulmonary Fibrosis. Biomedicines 2023; 11:biomedicines11010163. [PMID: 36672671 PMCID: PMC9856078 DOI: 10.3390/biomedicines11010163] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic interstitial lung disease whose pathogenesis involves a complex interaction of cell types and signaling pathways. Lung epithelial cells responding to repeated injury experience persistent inflammation and sustained epithelial-mesenchymal transition (EMT). The persistence of EMT-induced signals generates extracellular matrix accumulation, thereby causing fibrosis. Ferroptosis is a newly characterized iron-dependent non-apoptotic regulated cell death. Increased iron accumulation can increase iron-induced oxidant damage in alveolar epithelial cells. Studies have demonstrated that iron steady states and oxidation steady states play an important role in the iron death regulation of EMT. This review summarizes the role of ferroptosis in regulating EMT in pulmonary fibrosis, aiming to provide a new idea for the prevention and treatment of this disease.
Collapse
|
7
|
Liu Z, Wang J, Li S, Li L, Li L, Li D, Guo H, Gao D, Liu S, Ruan C, Dang X. Prognostic prediction and immune infiltration analysis based on ferroptosis and EMT state in hepatocellular carcinoma. Front Immunol 2022; 13:1076045. [PMID: 36591279 PMCID: PMC9797854 DOI: 10.3389/fimmu.2022.1076045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Background Ferroptosis is one of the main mechanisms of sorafenib against hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) plays an important role in the heterogeneity, tumor metastasis, immunosuppressive microenvironment, and drug resistance of HCC. However, there are few studies looking into the relationship between ferroptosis and EMT and how they may affect the prognosis of HCC collectively. Methods We downloaded gene expression and clinical data of HCC patients from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases for prognostic model construction and validation respectively. The Least absolute shrinkage and selection operator (LASSO) Cox regression was used for model construction. The predictive ability of the model was assessed by Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curve. We performed the expression profiles analysis to evaluate the ferroptosis and EMT state. CIBERSORT and single-sample Gene Set Enrichment Analysis (ssGSEA) methods were used for immune infiltration analysis. Results A total of thirteen crucial genes were identified for ferroptosis-related and EMT-related prognostic model (FEPM) stratifying patients into two risk groups. The high-FEPM group had shorter overall survivals than the low-FEPM group (p<0.0001 in the TCGA cohort and p<0.05 in the ICGC cohort). The FEPM score was proved to be an independent prognostic risk factor (HR>1, p<0.01). Furthermore, the expression profiles analysis suggested that the high-FEPM group appeared to have a more suppressive ferroptosis status and a more active EMT status than the low- FEPM group. Immune infiltration analysis showed that the myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs) were highly enriched in the high-FEPM group. Finally, a nomogram enrolling FEPM score and TNM stage was constructed showing outstanding predictive capacity for the prognosis of patients in the two cohorts. Conclusion In conclusion, we developed a ferroptosis-related and EMT-related prognostic model, which could help predict overall survival for HCC patients. It might provide a new idea for predicting the response to targeted therapies and immunotherapies in HCC patients.
Collapse
Affiliation(s)
- Zhaochen Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Jingju Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suxin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Luhao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Dingyang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Huahu Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Dute Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengyan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengshuo Ruan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowei Dang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Budd-Chiari Syndrome Diagnosis and Treatment Center of Henan Province, Zhengzhou University, Zhengzhou, China,*Correspondence: Xiaowei Dang,
| |
Collapse
|