1
|
Uzunoğlu E, Akalın M, Özkurt ZN, Yegin ZA, Karamert R. Ototoxicity associated with hematopoietic stem cell transplantation; what are the risk factors? Acta Otolaryngol 2024:1-5. [PMID: 39470587 DOI: 10.1080/00016489.2024.2411350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is a critical treatment for various hematologic malignancies but can lead to complications, including ototoxicity. AIM/OBJECTIVES This study aims to explore the relationship between patient-specific factors and ototoxicity in adult HSCT patients. MATERIAL AND METHODS We conducted a retrospective analysis of 129 adult patients who underwent HSCT between 2003 and 2020. Age, gender, transplant indications, conditioning regimens, and pre- and post-transplant audiometry thresholds data were collected from patient files. A hearing loss of 10 decibels or more at two consecutive frequencies or a hearing loss of 20 decibels or more at a single frequency was considered as significant hearing loss (SHL). Statistical analyses were performed to describe factors associated with SHL. RESULTS SHL occurred in 16.3% of patients. Older age was significantly associated with an increased risk of SHL (p = .035). Poorer pretransplant hearing thresholds at 4000 Hz and 6000 Hz were also significant predictors of SHL (p = .039 and p = .014, respectively). There was no significant relationship between the donor type of HSCT (autologous vs. allogeneic) and ototoxicity (p = .45), and between conditioning regimens and ototoxicity (p = .860). CONCLUSIONS Age and pre-existing hearing levels are significant predictors of ototoxicity post-HSCT. Careful management and monitoring are essential to prevent and address hearing loss in HSCT patients to improve hearing-related quality of life.
Collapse
Affiliation(s)
- Eray Uzunoğlu
- Department of Otorhinolaryngology/Head and Neck Surgery, Izmir Ekol Hospital, Ankara, Turkey
| | - Muhittin Akalın
- Department of Otorhinolaryngology, Gazi University Hospital, Ankara, Turkey
| | | | | | - Recep Karamert
- Department of Otorhinolaryngology, Gazi University Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Ho JCS, Ma BBY, Chow JCH. Optimizing Hearing Outcomes in Nasopharyngeal Cancer Survivors in the Era of Modern Radiotherapy and Systemic Therapy. Cancers (Basel) 2024; 16:3237. [PMID: 39335208 PMCID: PMC11430699 DOI: 10.3390/cancers16183237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Intensity-modulated radiation therapy (IMRT) improves disease control and reduces treatment-related toxicity in patients with localized nasopharyngeal carcinoma (NPC). However, due to the proximity of the auditory apparatus to the treatment volume and the frequent incorporation of cisplatin-based chemotherapy, treatment-related sensorineural hearing loss (SNHL) remains a common debilitating complication among NPC survivors. The reported crude incidence of SNHL following IMRT for NPC varies widely at 1-46% due to differences in auditory assessment methods and thresholds, follow-up durations, chemotherapy usage, and patient compositions. International guidelines and radiation dosimetric studies have recommended constraining the cochlear mean dose to less than 44-50 Gy, but the risk of SNHL remains high despite adherence to these constraints. Potential strategies to improve hearing outcomes in NPC survivors include cautious de-escalation of radiotherapy dose and volume, individualization of cochlear constraints, optimization of radiotherapy planning techniques, and the use of substitutes or alternative schedules for cisplatin-based chemotherapy. The addition of immune checkpoint inhibitors to chemoradiotherapy did not impact ototoxicity. Prospective studies that employ both objective and patient-reported auditory outcomes are warranted to test the long-term benefits of various approaches. This article aims to provide a comprehensive review of the incidence and radiation dose-toxicity relationship of SNHL in NPC survivors and to summarize potential strategies to optimize hearing outcomes in relation to nuances in radiotherapy planning and the selection of systemic therapy.
Collapse
Affiliation(s)
- Jason C S Ho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Brigette B Y Ma
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
3
|
Iliadou E, Plack CJ, Pastiadis K, Bibas A. Serum Prestin Level May Increase Following Music Exposure That Induces Temporary Threshold Shifts: A Pilot Study. Ear Hear 2024; 45:1059-1069. [PMID: 38488693 PMCID: PMC11175746 DOI: 10.1097/aud.0000000000001499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
OBJECTIVES To determine if blood prestin level changes after exposure to music at high sound pressure levels, and if this change is associated with temporary threshold shift (TTS) and/or changes in distortion product (DP) amplitude. DESIGN Participants were exposed to pop-rock music at 100 dBA for 15 min monaurally through headphones. Pure-tone audiometry, DP amplitude, and blood prestin level were measured before and after exposure. RESULTS Fourteen adults (9 women; age range: 20 to 54 years, median age = 31 [Interquartile ratio = 6.75]) with normal hearing were included in the study. Mean prestin level increased shortly after exposure to music, then returned to baseline within 1 week, although this trend was not observed in all participants. All participants presented TTS or a decrease in DP amplitude in at least one frequency after music exposure. There was a statistically significant average threshold elevation at 4 min postexposure. Statistically significant DP amplitude shifts were observed at 4 and 6 kHz, 2 min following exposure. Mean baseline serum prestin level (mean: 140.00 pg/mL, 95% confidence interval (CI): 125.92 to 154.07) progressively increased following music exposure, reaching a maximum at 2 hr (mean: 158.29 pg/mL, 95% CI: 130.42 to 186.66) and returned to preexposure level at 1 week (mean: 139.18 pg/mL, 95% CI: 114.69 to 163.68). However, after correction for multiple comparisons, mean prestin level showed no statistically significant increase from baseline at any timepoint. No correlation between maximum blood prestin level change and average TTS or distortion product otoacoustic emission amplitude shift was found. However, in an exploratory analysis, TTS at 6 kHz (the frequency at which maximum TTS occurred) decreased significantly as baseline blood prestin level increased. CONCLUSIONS The results suggest that blood prestin level may change after exposure to music at high sound pressure levels, although statistical significance was not reached in this relatively small sample after correction. Baseline serum prestin level may also predict the degree of TTS. These findings thus suggest that the role of baseline serum prestin level as a proxy marker of cochlear susceptibility to intense music exposure should be further explored.
Collapse
Affiliation(s)
- Eleftheria Iliadou
- First Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christopher J. Plack
- Division of Psychology, Communication and Human Neuroscience, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Konstantinos Pastiadis
- First Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- School of Music Studies, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Bibas
- First Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Chow JCH, Ho JCS, Cheung KM, Johnson D, Ip BYM, Beitler JJ, Strojan P, Mäkitie AA, Eisbruch A, Ng SP, Nuyts S, Mendenhall WM, Babighian S, Ferlito A. Neurological complications of modern radiotherapy for head and neck cancer. Radiother Oncol 2024; 194:110200. [PMID: 38438018 DOI: 10.1016/j.radonc.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Radiotherapy is one of the mainstay treatment modalities for the management of non-metastatic head and neck cancer (HNC). Notable improvements in treatment outcomes have been observed in the recent decades. Modern radiotherapy techniques, such as intensity-modulated radiotherapy and charged particle therapy, have significantly improved tumor target conformity and enabled better preservation of normal structures. However, because of the intricate anatomy of the head and neck region, multiple critical neurological structures such as the brain, brainstem, spinal cord, cranial nerves, nerve plexuses, autonomic pathways, brain vasculature, and neurosensory organs, are variably irradiated during treatment, particularly when tumor targets are in close proximity. Consequently, a diverse spectrum of late neurological sequelae may manifest in HNC survivors. These neurological complications commonly result in irreversible symptoms, impair patients' quality of life, and contribute to a substantial proportion of non-cancer deaths. Although the relationship between radiation dose and toxicity has not been fully elucidated for all complications, appropriate application of dosimetric constraints during radiotherapy planning may reduce their incidence. Vigilant surveillance during the course of survivorship also enables early detection and intervention. This article endeavors to provide a comprehensive review of the various neurological complications of modern radiotherapy for HNC, summarize the current incidence data, discuss methods to minimize their risks during radiotherapy planning, and highlight potential strategies for managing these debilitating toxicities.
Collapse
Affiliation(s)
- James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region.
| | - Jason C S Ho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Ka Man Cheung
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - David Johnson
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Special Administrative Region
| | - Bonaventure Y M Ip
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jonathan J Beitler
- Harold Alfond Center for Cancer Care, Maine General Hospital, Augusta, ME, USA
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Antti A Mäkitie
- Department of Otorhinolaryngology, Head and Neck Surgery, Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre, Austin Health, Melbourne, Australia
| | - Sandra Nuyts
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium; Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, Leuven, Belgium
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
5
|
de Blank PMK, Lange KR, Xing M, Mirzaei Salehabadi S, Srivastava D, Brinkman TM, Ness KK, Oeffinger KC, Neglia J, Krull KR, Nathan PC, Howell R, Turcotte LM, Leisenring W, Armstrong GT, Okcu MF, Bowers DC. Temporal changes in treatment and late mortality and morbidity in adult survivors of childhood glioma: a report from the Childhood Cancer Survivor Study. NATURE CANCER 2024; 5:590-600. [PMID: 38429413 PMCID: PMC11058025 DOI: 10.1038/s43018-024-00733-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024]
Abstract
Pediatric glioma therapy has evolved to delay or eliminate radiation for low-grade tumors. This study examined these temporal changes in therapy with long-term outcomes in adult survivors of childhood glioma. Among 2,501 5-year survivors of glioma in the Childhood Cancer Survivor Study diagnosed 1970-1999, exposure to radiation decreased over time. Survivors from more recent eras were at lower risk of late mortality (≥5 years from diagnosis), severe/disabling/life-threatening chronic health conditions (CHCs) and subsequent neoplasms (SNs). Adjusting for treatment exposure (surgery only, chemotherapy, or any cranial radiation) attenuated this risk (for example, CHCs (1990s versus 1970s), relative risk (95% confidence interval), 0.63 (0.49-0.80) without adjustment versus 0.93 (0.72-1.20) with adjustment). Compared to surgery alone, radiation was associated with greater than four times the risk of late mortality, CHCs and SNs. Evolving therapy, particularly avoidance of cranial radiation, has improved late outcomes for childhood glioma survivors without increased risk for late recurrence.
Collapse
Affiliation(s)
- Peter M K de Blank
- The Cure Starts Now Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Katharine R Lange
- Division of Pediatric Oncology, Hackensack Meridian Children's Health, Hackensack, NJ, USA
| | - Mengqi Xing
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Deokumar Srivastava
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tara M Brinkman
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Joseph Neglia
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Kevin R Krull
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul C Nathan
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rebecca Howell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucie M Turcotte
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Wendy Leisenring
- Cancer Prevention and Clinical Statistics Programs, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Fatih Okcu
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Daniel C Bowers
- Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Tran Y, Tang D, Lo C, Macken O, Newall J, Bierbaum M, Gopinath B. Establishing multifactorial risk factors for adult-onset hearing loss: A systematic review with topic modelling and synthesis of epidemiological evidence. Prev Med 2024; 180:107882. [PMID: 38296002 DOI: 10.1016/j.ypmed.2024.107882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND This systematic review explores the multifaceted nature of risk factors contributing to adult-onset HL. The objective was to synthesise the most recent epidemiological evidence to generate pooled proportional incidences for the identified risk factors. METHODS We conducted an extensive search of electronic databases (MEDLINE, EMBASE, and psychINFO) for studies providing epidemiological evidence of risk factors associated with hearing loss. Topic modelling using Latent Dirichlet Allocation (LDA) was first conducted to determine how many risk factor themes were available from the papers. Data were analysed by calculating the pooled proportional incidence using a meta-analysis of proportions. RESULTS From the 72 studies reviewed, six key risk factor themes emerged through LDA topic modelling. The review identified ototoxicity, primarily caused by cancer treatments and antibiotics, infectious diseases like COVID-19, occupational noise exposure, lifestyle factors, health conditions, biological responses, and age progression as significant risk factors for HL. The highest proportional incidence was found with cancer-related ototoxicity at 55.4% (95%CI: 39.0-70.7), followed closely by ototoxicity from infectious diseases at 50.0% (95%CI: 28.5-71.5). This high proportional incidence suggests the need to explore less destructive therapies and proactively monitor hearing function during treatments. CONCLUSIONS The findings of this review, combined with the synthesis of epidemiological evidence, enhance our understanding of hearing loss (HL) pathogenesis and highlight potential areas for intervention, thereby paving the way for more effective prevention and management of adult-onset hearing loss in our ageing global population.
Collapse
Affiliation(s)
- Yvonne Tran
- Macquarie University Hearing Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia.
| | - Diana Tang
- Macquarie University Hearing Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia.
| | - Charles Lo
- Australian College of Applied Professions, Sydney, NSW 2000, Australia.
| | - Oonagh Macken
- Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia.
| | - John Newall
- Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia.
| | - Mia Bierbaum
- Australian Institute of Health Innovation, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia.
| | - Bamini Gopinath
- Macquarie University Hearing Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
7
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Tuleasca C, Toma-Dasu I, Duroux S, George M, Maire R, Daniel RT, Patin D, Schiappacasse L, Dasu A, Faouzi M, Levivier M. Impact of the Mean Cochlear Biologically Effective Dose on Hearing Preservation After Stereotactic Radiosurgery for Vestibular Schwannoma: A Retrospective Longitudinal Analysis. Neurosurgery 2024; 94:174-182. [PMID: 37431994 PMCID: PMC10695539 DOI: 10.1227/neu.0000000000002609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/19/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Stereotactic radiosurgery (SRS) is a useful alternative for small- to medium-sized vestibular schwannoma. To evaluate whether biologically effective dose (BED Gy2.47 ), calculated for mean (BED Gy2.47 mean) and maximal (BED Gy2.47 max) cochlear dose, is relevant for hearing preservation. METHODS This is a retrospective longitudinal single-center study. Were analyzed 213 patients with useful baseline hearing. Risk of hearing decline was assessed for Gardner-Robertson classes and pure tone average (PTA) loss. The mean follow-up period was 39 months (median 36, 6-84). RESULTS Hearing decline (Gardner-Robertson class) 3 years after SRS was associated with higher cochlear BED Gy2.47 mean (odds ratio [OR] 1.39, P = .009). Moreover, BED Gy2.47 mean was more relevant as compared with BED Gy2.47 max (OR 1.13, P = .04). Risk of PTA loss (continuous outcome, follow-up minus baseline) was significantly corelated with BED Gy2.47 mean at 24 (beta coefficient 1.55, P = .002) and 36 (beta coefficient 2.01, P = .004) months after SRS. Risk of PTA loss (>20 dB vs ≤) was associated with higher BED Gy2.47 mean at 6 (OR 1.36, P = .002), 12 (OR 1.36, P = .007), and 36 (OR 1.37, P = .02) months. Risk of hearing decline at 36 months for the BED Gy2.47 mean of 7-8, 10, and 12 Gy 2.47 was 28%, 57%, and 85%, respectively. CONCLUSION Cochlear BED Gy2.47 mean is relevant for hearing decline after SRS and more relevant as compared with BED Gy2.47 max. Three years after SRS, this was sustained for all hearing decline evaluation modalities. Our data suggest the BED Gy2.47 mean cut-off of ≤8 Gy 2.47 for better hearing preservation rates .
Collapse
Affiliation(s)
- Constantin Tuleasca
- Lausanne University Hospital (CHUV), Neurosurgery Service and Gamma Knife Center, Lausanne, Switzerland
- University of Lausanne (UNIL), Faculty of Biology and Medicine (FBM), Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), Lausanne, Switzerland
| | - Iuliana Toma-Dasu
- Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden
- Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | - Sebastien Duroux
- University of Lausanne (UNIL), Faculty of Biology and Medicine (FBM), Lausanne, Switzerland
| | - Mercy George
- ENT Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raphael Maire
- ENT Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Roy Thomas Daniel
- Lausanne University Hospital (CHUV), Neurosurgery Service and Gamma Knife Center, Lausanne, Switzerland
- University of Lausanne (UNIL), Faculty of Biology and Medicine (FBM), Lausanne, Switzerland
| | - David Patin
- Institute of Radiation Physics, Lausanne, Switzerland
| | - Luis Schiappacasse
- Radiation Oncology Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mohamed Faouzi
- Division of Biostatistics, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Marc Levivier
- Lausanne University Hospital (CHUV), Neurosurgery Service and Gamma Knife Center, Lausanne, Switzerland
- University of Lausanne (UNIL), Faculty of Biology and Medicine (FBM), Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), Lausanne, Switzerland
| |
Collapse
|
9
|
Aslam MA, Ahmad H, Malik HS, Uinarni H, Karim YS, Akhmedov YM, Abdelbasset WK, Awadh SA, Abid MK, Mustafa YF, Farhood B, Sahebkar A. Radiotherapy-associated Sensorineural Hearing Loss in Pediatric Oncology Patients. Curr Med Chem 2024; 31:5351-5369. [PMID: 37190814 DOI: 10.2174/0929867330666230515112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
During the radiotherapeutic treatment of pediatric oncology patients, they would be at a latent risk of developing ionizing radiation-induced ototoxicity when the cochlea or auditory nerve is located within the radiation field. Sensorineural hearing loss (SNHL) is an irreversible late complication of radiotherapy, and its incidence depends on various factors such as the patient's hearing sensitivity, total radiation dose to the cochlea, radiotherapy fractionation regimen, age and chemoradiation. Importantly, this complication exhibits serious challenges to adult survivors of childhood cancer, as it has been linked to impairments in academic achievement, psychosocial development, independent living skills, and employment in the survivor population. Therefore, early detection and proper management can alleviate academic, speech, language, social, and psychological morbidity arising from hearing deficits. In the present review, we have addressed issues such as underlying mechanisms of radiation-induced SNHL, audiometric findings of pediatric cancer patients treated with radiotherapy, and management and protection measures against radiation-induced ototoxicity.
Collapse
Affiliation(s)
- Muhammad Ammar Aslam
- Department of Emergency Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hassaan Ahmad
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hamza Sultan Malik
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Radiologist at Pantai Indah Kapuk Hospital, Jakarta, Indonesia
| | | | - Yusuf Makhmudovich Akhmedov
- Department of Pediatric Surgery, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Sura A Awadh
- Department of Anesthesia, Al-Mustaqbal University, Babylon, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Moore B, Sheets G, Doss J, Umrigar A, Norman M, Fang Z, Prasad P, Musso A, Clay S, Tsien F. Is Methotrexate Ototoxic? Investigating the Ototoxic Late Effects of Pediatric Cancer Treatment. Am J Audiol 2023; 32:657-664. [PMID: 37532243 PMCID: PMC10558153 DOI: 10.1044/2023_aja-22-00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 08/04/2023] Open
Abstract
PURPOSE Pediatric cancer survivors often experience long-term adverse health conditions or late effects, including hearing loss, that are attributable to cancer therapy. Ototoxic late effects have been documented in patients with cancer treated with cisplatin-based chemotherapy and/or radiation. This study evaluated the late effects of methotrexate as compared to cisplatin and other cancer therapy agents on pediatric cancer survivors at the Children's Hospital of New Orleans in Louisiana (CHNOLA) and patients currently undergoing cancer treatment at Our Lady of the Lake (OLOL) Hospital in Baton Rouge, Louisiana. METHOD A retrospective chart review was conducted of medical records from the CHNOLA Audiology Clinic and the Treatment After Cancer Late Effects clinic, which followed patients 2-19 years after cancer treatment completion and current patients with pediatric cancer at OLOL. This study identified pediatric cancer survivors between 2 and 24 years of age with treatment protocol information and audiological evaluations. Association studies were performed to calculate p values using an exact chi-square test. RESULTS More than 44% of late-effects patients had significant hearing loss; mild-to-profound hearing loss was observed in 37.5% of patients who received methotrexate treatment without cisplatin or irradiation. Eighty-three percent of the patients who received cisplatin had late-effect hearing loss. In patients currently receiving cancer treatment, 12% had significant hearing loss. CONCLUSIONS The results from this study suggest that children who receive therapies not clinically established as ototoxic (i.e., methotrexate) may still be at a high risk of developing long-term hearing loss as a late effect. Due to the high incidence rate of hearing loss among patients with pediatric cancer, we recommend that audiologists be part of the late-effects care team. This study also demonstrates that patients with pediatric cancer treated with methotrexate should receive routine long-term auditory monitoring as part of their standard of care to detect and manage hearing loss early, minimizing adverse outcomes.
Collapse
Affiliation(s)
- Brittney Moore
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville
| | - Gabrielle Sheets
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans
| | - Jordan Doss
- Department of Pediatric Hematology/Oncology, Children's Hospital of New Orleans, Louisiana Children's Medical Center
| | - Ayesha Umrigar
- Bureau of Family Health, Louisiana Department of Health, New Orleans
| | - Michael Norman
- LSU Human Development Center, School of Allied Health Professions, Louisiana State University Health Sciences Center, New Orleans
| | - Zhide Fang
- Biostatistics Program, School of Public Health, and Biostatistics & Epidemiology Core, Louisiana Clinical & Translational Science Center, Louisiana State University Health Sciences Center, New Orleans
| | - Pinki Prasad
- Department of Pediatric Hematology/Oncology, Children's Hospital of New Orleans, Louisiana Children's Medical Center
| | - Amanda Musso
- Department of Audiology, Children's Hospital of New Orleans, Louisiana Children's Medical Center
| | - Sloane Clay
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans
| | - Fern Tsien
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans
| |
Collapse
|
11
|
He YQ, Luo LT, Wang TM, Xue WQ, Yang DW, Li DH, Diao H, Xiao RW, Deng CM, Zhang WL, Liao Y, Wu YX, Wang QL, Zhou T, Li XZ, Zheng XH, Zhang PF, Zhang SD, Hu YZ, Sun Y, Jia WH. Clinical and genome-wide association analysis of chemoradiation-induced hearing loss in nasopharyngeal carcinoma. Hum Genet 2023; 142:759-772. [PMID: 37062025 PMCID: PMC10182145 DOI: 10.1007/s00439-023-02554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Chemoradiation-induced hearing loss (CRIHL) is one of the most devasting side effects for nasopharyngeal carcinoma (NPC) patients, which seriously affects survivors' long-term quality of life. However, few studies have comprehensively characterized the risk factors for CRIHL. In this study, we found that age at diagnosis, tumor stage, and concurrent cisplatin dose were positively associated with chemoradiation-induced hearing loss. We performed a genome-wide association study (GWAS) in 777 NPC patients and identified rs1050851 (within the exon 2 of NFKBIA), a variant with a high deleteriousness score, to be significantly associated with hearing loss risk (HR = 5.46, 95% CI 2.93-10.18, P = 9.51 × 10-08). The risk genotype of rs1050851 was associated with higher NFKBIA expression, which was correlated with lower cellular tolerance to cisplatin. According to permutation-based enrichment analysis, the variants mapping to 149 hereditary deafness genes were significantly enriched among GWAS top signals, which indicated the genetic similarity between hereditary deafness and CRIHL. Pathway analysis suggested that synaptic signaling was involved in the development of CRIHL. Additionally, the risk score integrating genetic and clinical factors can predict the risk of hearing loss with a relatively good performance in the test set. Collectively, this study shed new light on the etiology of chemoradiation-induced hearing loss, which facilitates high-risk individuals' identification for personalized prevention and treatment.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Lu-Ting Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Hua Diao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Qiao-Ling Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
- School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China.
- Biobank of Sun Yat‑sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
12
|
Tong J, Hu C, Wu Y, Liu Q, Sun D. Radiation-induced NF-κB activation is involved in cochlear damage in mice via promotion of a local inflammatory response. JOURNAL OF RADIATION RESEARCH 2023; 64:63-72. [PMID: 36253086 PMCID: PMC9855318 DOI: 10.1093/jrr/rrac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The radiation-induced inflammatory response is involved in radiation damage to the cochlea and causes sensorineural hearing loss (SNHL). NF-κB, as the master switch of the inflammatory response, regulates the expression of many inflammation-related genes and thus the inflammatory response. Therefore, in this study we used a mouse model to determine whether radiation-induced NF-κB activation is involved in damage to the cochlea and to investigate the underlying mechanism. Eventually, we found that NF-κB was activated after radiation of the cochleae and the activation reached a maximum at 2-6 h after radiation. And morphological analysis showed severe damage to the cochleae after radiation, but this damage was significantly ameliorated by JSH-23 (an inhibitor of NF-κB) pretreatment. Along with these morphological changes, the expression levels of proinflammatory molecules (including proinflammatory cytokines IL-6, TNF-α, COX-2 and inflammation-related proteins VCAM-1, MIP-1β) in the cochlear tissues were significantly increased after radiation, but were significantly decreased by JSH-23 pretreatment compared to radiation alone. Therefore, these results indicated that radiation-induced NF-κB activation was involved in damage to the cochleae and resultant SNHL via its promotion of the inflammatory response mediated by overexpression of some proinflammatory molecules in cochlear tissues, and inhibition of radiation-induced NF-κB was conducive to preventing such damage.
Collapse
Affiliation(s)
- Jiaojiao Tong
- Cancer Center, the Second Hospital of Shandong University, Jinan, Shandong Province 250033, China
| | - Chunhui Hu
- Cancer Center, the Second Hospital of Shandong University, Jinan, Shandong Province 250033, China
| | - Yuqian Wu
- Cancer Center, the Second Hospital of Shandong University, Jinan, Shandong Province 250033, China
| | - Qin Liu
- Cancer Center, the Second Hospital of Shandong University, Jinan, Shandong Province 250033, China
| | - Dianshui Sun
- Corresponding author. Cancer Center, the Second Hospital of Shandong University, No.247 Beiyuan Road, Jinan, Shandong Province, 250033, China. Tel: +86 13583111990;
| |
Collapse
|
13
|
Wu H, Ou Y, Wang S, Yu F, Fan X, Kang H, Chen T. Considering the protective effect of exendin-4 against oxidative stress in spiral ganglion neurons. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1423-1430. [PMID: 37970444 PMCID: PMC10634057 DOI: 10.22038/ijbms.2023.69190.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/30/2023] [Indexed: 11/17/2023]
Abstract
Objectives The protection of spiral ganglion neurons (SGNs) is crucial for hearing loss. Exendin-4 has been shown to have neuroprotective effects in several neurological disorders. Therefore, this study aimed to investigate the effect of the glucagon-like protein-1 receptor (GLP-1R) agonist exendin-4 on kanamycin-induced injury in mouse SGNs in vitro. Materials and Methods In this study, GLP-1R expression in SGNs was verified by immunofluorescence and immunohistochemical staining. In vitro-cultured SGNs and the organ of Corti were exposed to kanamycin with or without exendin-4 treatment. The cell survival rate was measured using the cell counting kit-8 assay, and the damage to auditory nerve fibers (ANF) projecting radially from the SGNs was evaluated using immunofluorescence staining. Reactive oxygen species (ROS) content was determined by flow cytometry, and glutathione peroxidase (GSH-Px) content, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content were determined by spectrophotometry. Protein expression of nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) was detected using western blotting. Results GLP-1R was expressed in SGNs. Treatment with 1 mM kanamycin for 24 hr induced SGN damage. Exendin-4 (100 nM) had a protective effect against kanamycin-induced SGN cell injury, improved cell survival rate, reduced nerve fiber injury, increased SOD activity and GSH-Px level, and reduced MDA and ROS contents. The Nrf2/HO-1 pathway was activated. Conclusion Exendin-4 alleviates oxidative damage and exerts neuroprotective effects in kanamycin-induced SGN injury through the Nrf2/HO-1 signaling pathway. Exendin-4 has the potential to prevent or treat hearing loss due to SGN damage.
Collapse
Affiliation(s)
- Hongxia Wu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Yangxi Ou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Siji Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Fenghui Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Xiaoxia Fan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Houyong Kang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| | - Tao Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical Chongqing, China
| |
Collapse
|
14
|
Bachtiary B, Veraguth D, Roos N, Pfiffner F, Leiser D, Pica A, Walser M, von Felten S, Weber DC. Hearing Loss in Cancer Patients with Skull Base Tumors Undergoing Pencil Beam Scanning Proton Therapy: A Retrospective Cohort Study. Cancers (Basel) 2022; 14:cancers14163853. [PMID: 36010847 PMCID: PMC9405884 DOI: 10.3390/cancers14163853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
To assess the incidence and severity of changes in hearing threshold in patients undergoing high-dose pencil-beam-scanning proton therapy (PBS-PT). This retrospective cohort study included fifty-one patients (median 50 years (range, 13–68)) treated with PBS-PT for skull base tumors. No chemotherapy was delivered. Pure tone averages (PTAs)were determined before (baseline) and after PBS-PT as the average hearing thresholds at frequencies of 0.5, 1, 2, and 4 kHz. Hearing changes were calculated as PTA differences between pre-and post-PBS-PT. A linear mixed-effects model was used to assess the relationship between the PTA at the follow-up and the baseline, the cochlea radiation dose intensity, the increased age, and the years after PBS-PT. Included patients were treated for chordoma (n = 24), chondrosarcoma (n = 9), head and neck tumors (n = 9), or meningioma (n = 3), with a mean tumor dose of 71.1 Gy (RBE) (range, 52.0–77.8), and a mean dose of 37 Gy (RBE) (range, 0.0–72.7) was delivered to the cochleas. The median time to the first follow-up was 11 months (IQR, 5.5–33.7). The PTA increased from a median of 15 dB (IQR 10.0–25) at the baseline to 23.8 (IQR 11.3–46.3) at the first follow-up. In the linear mixed-effect model, the baseline PTA (estimate 0.80, 95%CI 0.64 to 0.96, p ≤ 0.001), patient’s age (0.30, 0.03 to 0.57, p = 0.029), follow-up time (2.07, 0.92 to 3.23, p ≤ 0.001), and mean cochlear dose in Gy (RBE) (0.34, 0.21 to 0.46, p ≤ 0.001) were all significantly associated with an increase in PTA at follow-up. The applied cochlear dose and baseline PTA, age, and time after treatment were significantly associated with hearing loss after proton therapy.
Collapse
Affiliation(s)
- Barbara Bachtiary
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
- Correspondence: ; Tel.: +41-56-310-2319
| | - Dorothe Veraguth
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Nicolaas Roos
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Flurin Pfiffner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
| | - Marc Walser
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
| | - Stefanie von Felten
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, 8001 Zurich, Switzerland
| | - Damien C. Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|