1
|
Wellman S, Forrest AM, Douglas MM, Subbaraman A, Zhang G, Kozai TDY. Dynamic changes in structure and function of brain mural cells around chronically implanted microelectrodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598494. [PMID: 38915601 PMCID: PMC11195141 DOI: 10.1101/2024.06.11.598494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Integration of neural interfaces with minimal tissue disruption in the brain is ideal to develop robust tools that can address essential neuroscience questions and combat neurological disorders. However, implantation of intracortical devices provokes severe tissue inflammation within the brain, which requires a high metabolic demand to support a complex series of cellular events mediating tissue degeneration and wound healing. Pericytes, peri-vascular cells involved in blood-brain barrier maintenance, vascular permeability, waste clearance, and angiogenesis, have recently been implicated as potential perpetuators of neurodegeneration in brain injury and disease. While the intimate relationship between pericytes and the cortical microvasculature have been explored in other disease states, their behavior following microelectrode implantation, which is responsible for direct blood vessel disruption and dysfunction, is currently unknown. Using two-photon microscopy we observed dynamic changes in the structure and function of pericytes during implantation of a microelectrode array over a 4-week implantation period. Pericytes respond to electrode insertion through transient increases in intracellular calcium and underlying constriction of capillary vessels. Within days following the initial insertion, we observed an influx of new, proliferating pericytes which contribute to new blood vessel formation. Additionally, we discovered a potentially novel population of reactive immune cells in close proximity to the electrode-tissue interface actively engaging in encapsulation of the microelectrode array. Finally, we determined that intracellular pericyte calcium can be modulated by intracortical microstimulation in an amplitude- and frequency-dependent manner. This study provides a new perspective on the complex biological sequelae occurring the electrode-tissue interface and will foster new avenues of potential research consideration and lead to development of more advanced therapeutic interventions towards improving the biocompatibility of neural electrode technology.
Collapse
|
2
|
Kim BS, Kim JU, Lee J, Ryu KM, Kim SH, Hwang NS. Decellularized brain extracellular matrix based NGF-releasing cryogel for brain tissue engineering in traumatic brain injury. J Control Release 2024; 368:140-156. [PMID: 38373473 DOI: 10.1016/j.jconrel.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Traumatic brain injuries(TBI) pose significant challenges to human health, specifically neurological disorders and related motor activities. After TBI, the injured neuronal tissue is known for hardly regenerated and recovered to their normal neuron physiology and tissue compositions. For this reason, tissue engineering strategies that promote neuronal regeneration have gained increasing attention. This study explored the development of a novel neural tissue regeneration cryogel by combining brain-derived decellularized extracellular matrix (ECM) with heparin sulfate crosslinking that can perform nerve growth factor (NGF) release ability. Morphological and mechanical characterizations of the cryogels were performed to assess their suitability as a neural regeneration platform. After that, the heparin concnentration dependent effects of varying NGF concentrations on cryogel were investigated for their controlled release and impact on neuronal cell differentiation. The results revealed a direct correlation between the concentration of released NGF and the heparin sulfate ratio in cryogel, indicating that the cryogel can be tailored to carry higher loads of NGF with heparin concentration in cryogel that induced higher neuronal cell differentiation ratio. Furthermore, the study evaluated the NGF loaded cryogels on neuronal cell proliferation and brain tissue regeneration in vivo. The in vivo results suggested that the NGF loaded brain ECM derived cryogel significantly affects the regeneration of brain tissue. Overall, this research contributes to the development of advanced neural tissue engineering strategies and provides valuable insights into the design of regenerative cryogels that can be customized for specific therapeutic applications.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewoo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Park HY, van Bruggen VLE, Peutz-Kootstra CJ, Ophelders DRMG, Jellema RK, Reutelingsperger CPM, Rutten BPF, Wolfs TGAM. Time Dependent Changes in the Ovine Neurovascular Unit; A Potential Neuroprotective Role of Annexin A1 in Neonatal Hypoxic-Ischemic Encephalopathy. Int J Mol Sci 2023; 24:ijms24065929. [PMID: 36983004 PMCID: PMC10054605 DOI: 10.3390/ijms24065929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Perinatal brain injury following hypoxia-ischemia (HI) is characterized by high mortality rates and long-term disabilities. Previously, we demonstrated that depletion of Annexin A1, an essential mediator in BBB integrity, was associated with a temporal loss of blood-brain barrier (BBB) integrity after HI. Since the molecular and cellular mechanisms mediating the impact of HI are not fully scrutinized, we aimed to gain mechanistic insight into the dynamics of essential BBB structures following global HI in relation to ANXA1 expression. Global HI was induced in instrumented preterm ovine fetuses by transient umbilical cord occlusion (UCO) or sham occlusion (control). BBB structures were assessed at 1, 3, or 7 days post-UCO by immunohistochemical analyses of ANXA1, laminin, collagen type IV, and PDGFRβ for pericytes. Our study revealed that within 24 h after HI, cerebrovascular ANXA1 was depleted, which was followed by depletion of laminin and collagen type IV 3 days after HI. Seven days post-HI, increased pericyte coverage, laminin and collagen type IV expression were detected, indicating vascular remodeling. Our data demonstrate novel mechanistic insights into the loss of BBB integrity after HI, and effective strategies to restore BBB integrity should potentially be applied within 48 h after HI. ANXA1 has great therapeutic potential to target HI-driven brain injury.
Collapse
Affiliation(s)
- Hyun Young Park
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Valéry L E van Bruggen
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | | | - Daan R M G Ophelders
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Reint K Jellema
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Pediatrics, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Zhu W, Davis CM, Allen EM, Feller SL, Bah TM, Shangraw RE, Wang RK, Alkayed NJ. Sex Difference in Capillary Reperfusion After Transient Middle Cerebral Artery Occlusion in Diabetic Mice. Stroke 2023; 54:364-373. [PMID: 36689578 PMCID: PMC9883047 DOI: 10.1161/strokeaha.122.040972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/13/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Type 2 diabetes (DM2) exacerbates stroke injury, reduces efficacy of endovascular therapy, and worsens long-term functional outcome. Sex differences exist in stroke incidence, response to therapy, poststroke microvascular dysfunction, and functional recovery. In this study, we tested the hypotheses that poor outcome after stroke in the setting of DM2 is linked to impaired microvascular tissue reperfusion and that male and female DM2 mice exhibit different microvascular reperfusion response after transient middle cerebral artery occlusion (MCAO). METHODS Transient MCAO was induced for 60 minutes using an intraluminal filament in young adult DM2 and nondiabetic control male and female mice. Capillary flux in deep cortical layers was assessed using optical coherence tomography-based optical microangiography (OMAG), and associated regional brain infarct size was evaluated by hematoxylin and eosin staining. RESULTS Compared to baseline, MCAO reduced absolute capillary red blood cell flux by 84% at 24 hours post-MCAO in male DM2 (P<0.001) but not male control mice. When normalized to pre-MCAO baseline, red blood cell flux 24 hours after stroke was 64% lower in male DM2 mice than male nondiabetic controls (P<0.01). In females, MCAO decreased capillary flux by 48% at 24 hours post-MCAO compared with baseline in DM2 (P<0.05) but not in control mice. Red blood cell flux of female DM2 mice did not differ from that of nondiabetic controls either before or 24 hours after MCAO. Furthermore, normalized capillary flux 24 hours after MCAO failed to differ between female DM2 mice and nondiabetic controls. Concomitantly, male but not female DM2 mice experienced 25% larger infarct in caudate-putamen versus respective nondiabetic controls (P<0.05). CONCLUSIONS DM2 impairs capillary perfusion and exacerbates ischemic deep brain injury in male but not female young adult mice. Premenopausal females appear to be protected against DM2-related capillary dysfunction and brain injury.
Collapse
Affiliation(s)
- Wenbin Zhu
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA 97239
| | - Catherine M Davis
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA 97239
| | - Elyse M Allen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA 97239
| | - Sarah L Feller
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA 97239
| | - Thierno M Bah
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA 97239
| | - Robert E Shangraw
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA 97239
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA 98195
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA 97239
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA 97239
| |
Collapse
|
5
|
Components of Salvia miltiorrhiza and Panax notoginseng Protect Pericytes Against OGD/R-Induced Injury via Regulating the PI3K/AKT/mTOR and JNK/ERK/P38 Signaling Pathways. J Mol Neurosci 2022; 72:2377-2388. [PMID: 36394713 DOI: 10.1007/s12031-022-02082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Salvia miltiorrhiza (SAL) and Panax notoginseng (PNS) are widely used in treating of ischemic stroke. However, it is unknown which components of SAL and PNS protect brain microvascular pericytes after an ischemic stroke. We evaluated the protective effects and mechanisms of SAL and PNS components in pericytes subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Pericytes were subjected to OGD/R. Cell Counting Kit-8 (CCK-8) was used to evaluate cell viability. ROS and SOD kits were used to detect oxidative stress. Flow cytometry was performed to analyze cell apoptosis. To evaluate cell migration, a scratch assay was performed. Expression of cleaved caspase-3, Bcl-2, Bax, VEGF, Ang-1, PDGFR-β, PI3K/AKT/mTOR, and JNK/ERK/P38 signaling pathways were identified using western blot. The results revealed that salvianolic acid B (Sal B), salvianolic acid D (Sal D), notoginsenoside R1 (R1), ginsenoside Rb1 (Rb1), and ginsenoside Rg1 (Rg1) increased the cell viability of pericytes subjected to OGD/R, reduced the level of ROS, and increased the expression of SOD. The components reduced cell apoptosis, increased the protein level of Bcl-2/Bax, reduced the level of cleaved caspase-3/caspase-3, increased cell migration, and enhanced the levels of Ang-1, PDGFR-β, and VEGF. The components could activate PI3K/AKT/mTOR pathway while inhibiting the JNK/ERK/P38 pathway. Studies found that Sal B, Sal D, R1, Rb1, and Rg1 inhibited oxidative stress and apoptosis while increasing the release of pro-angiogenic regulators of pericytes related to the PI3K/AKT/mTOR and JNK/ERK/P38 signaling pathways. This provides a potential foundation for developing monomeric drugs for treating ischemic stroke.
Collapse
|
6
|
Selection of the Male or Female Sex in Chronic Unpredictable Mild Stress-Induced Animal Models of Depression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2602276. [PMID: 35813234 PMCID: PMC9262579 DOI: 10.1155/2022/2602276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 01/03/2023]
Abstract
Depression is a serious public health problem and an important factor leading to disease-related disability. Influenced by many factors, such as psychological, hormonal, and genetic factors, the incidence rate of depression in females is approximately two times that in males. However, in preclinical neuroscience research, the selection of the animals' sex for use in depression models has been controversial. At present, in most preclinical studies, the animals generally chosen in depression models have been male rodents rather than female rodents. It remains doubtful whether the data obtained from male animals can be generalized to female animals. The performance of female animals in preclinical studies of depression has been inconclusive. Based on a review of a large number of original studies in the PubMed database, it was found that although male rodents are more commonly used in the study of depression, the use of female animals also shows good modeling of depression and has its advantages. The influence of the animals' sex in the chronic unpredictable mild stress (CUMS) model needs further research.
Collapse
|
7
|
Zhou SY, Guo ZN, Zhang DH, Qu Y, Jin H. The Role of Pericytes in Ischemic Stroke: Fom Cellular Functions to Therapeutic Targets. Front Mol Neurosci 2022; 15:866700. [PMID: 35493333 PMCID: PMC9043812 DOI: 10.3389/fnmol.2022.866700] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease causing high rates of disability and fatality. In recent years, the concept of the neurovascular unit (NVU) has been accepted by an increasing number of researchers and is expected to become a new paradigm for exploring the pathogenesis and treatment of IS. NVUs are composed of neurons, endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix. As an important part of the NVU, pericytes provide support for other cellular components and perform a variety of functions, including participating in the maintenance of the normal physiological function of the blood–brain barrier, regulating blood flow, and playing a role in inflammation, angiogenesis, and neurogenesis. Therefore, treatment strategies targeting pericyte functions, regulating pericyte epigenetics, and transplanting pericytes warrant exploration. In this review, we describe the reactions of pericytes after IS, summarize the potential therapeutic targets and strategies targeting pericytes for IS, and provide new treatment ideas for ischemic stroke.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dian-Hui Zhang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Hang Jin,
| |
Collapse
|
8
|
Blaschuk OW. Potential Therapeutic Applications of N-Cadherin Antagonists and Agonists. Front Cell Dev Biol 2022; 10:866200. [PMID: 35309924 PMCID: PMC8927039 DOI: 10.3389/fcell.2022.866200] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the cell adhesion molecule (CAM), known as neural (N)-cadherin (CDH2). The molecular basis of N-cadherin-mediated intercellular adhesion is discussed, as well as the intracellular signaling pathways regulated by this CAM. N-cadherin antagonists and agonists are then described, and several potential therapeutic applications of these intercellular adhesion modulators are considered. The usefulness of N-cadherin antagonists in treating fibrotic diseases and cancer, as well as manipulating vascular function are emphasized. Biomaterials incorporating N-cadherin modulators for tissue regeneration are also presented. N-cadherin antagonists and agonists have potential for broad utility in the treatment of numerous maladies.
Collapse
|