1
|
Turk H, Temiz E, Koyuncu I. Metabolic reprogramming in sepsis-associated acute kidney injury: insights from lipopolysaccharide-induced oxidative stress and amino acid dysregulation. Mol Biol Rep 2024; 52:52. [PMID: 39680269 DOI: 10.1007/s11033-024-10175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) stands out as a critical health issue due to its high mortality and morbidity rates. This study aimed to comprehensively investigate the biochemical and metabolic alterations induced by lipopolysaccharide (LPS) in human embryonic kidney cells (HEK-293) using an in vitro model. METHODS AND RESULTS The study investigated the impact of LPS on HEK-293 cells by evaluating cytotoxicity using the MTT assay, analyzing apoptosis, cell cycle progression, and oxidative stress via flow cytometry, measuring TNF-α levels through ELISA, and assessing amino acid metabolism with LC-MS/MS. The findings demonstrated that LPS significantly reduced cell viability in a dose-dependent manner, increased apoptotic cell populations, induced DNA damage by arresting the cell cycle in the Sub-G1 phase, and activated oxidative stress pathways. Notably, elevated reactive oxygen species (ROS) production and increased secretion of the pro-inflammatory cytokine TNF-α highlighted LPS's inflammatory and cytotoxic effects. Furthermore, systematic analysis revealed LPS-induced disruptions in amino acid metabolism, including marked reductions in alanine, arginine, and aspartic acid levels. KEGG pathway analysis identified significant metabolic alterations in pathways such as the urea cycle, TCA cycle, and glutathione metabolism. Interestingly, elevated citrulline levels suggested a potential adaptive mechanism to counteract LPS-induced inflammation and oxidative stress. Additionally, ROC analysis identified cystine as a highly reliable biomarker, with an AUC value of 1.00, emphasizing its critical role in metabolic reprogramming associated with SA-AKI. CONCLUSIONS This study provides critical insights into the molecular pathophysiology of SA-AKI and emphasizes the promise of metabolomic approaches in the early diagnosis of sepsis-related complications and the development of targeted therapies.
Collapse
Affiliation(s)
- Hakan Turk
- Department of Urology, Usak Private Oztan Hospital, Usak, Turkey.
| | - Ebru Temiz
- Departments of Endocrinology, Diabetes and Nutrition Center, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Medical Promotion and Marketing Program, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Ismail Koyuncu
- Departments of Medical Biochemistry, Faculty of Medicine; Science and Technology Application and Research Center, Harran University, Sanliurfa, Turkey
| |
Collapse
|
2
|
Noel S, Kapoor R, Rabb H. New approaches to acute kidney injury. Clin Kidney J 2024; 17:65-81. [PMID: 39583139 PMCID: PMC11581771 DOI: 10.1093/ckj/sfae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 11/26/2024] Open
Abstract
Acute kidney injury (AKI) is a common and serious clinical syndrome that involves complex interplay between different cellular, molecular, metabolic and immunologic mechanisms. Elucidating these pathophysiologic mechanisms is crucial to identify novel biomarkers and therapies. Recent innovative methodologies and the advancement of existing technologies has accelerated our understanding of AKI and led to unexpected new therapeutic candidates. The aim of this review is to introduce and update the reader about recent developments applying novel technologies in omics, imaging, nanomedicine and artificial intelligence to AKI research, plus to provide examples where this can be translated to improve patient care.
Collapse
Affiliation(s)
- Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Radhika Kapoor
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Selvarajah V, Robertson D, Hansen L, Jermutus L, Smith K, Coggi A, Sánchez J, Chang YT, Yu H, Parkinson J, Khan A, Chung HS, Hess S, Dumas R, Duck T, Jolly S, Elliott TG, Baker J, Lecube A, Derwahl KM, Scott R, Morales C, Peters C, Goldenberg R, Parker VER, Heerspink HJL. A randomized phase 2b trial examined the effects of the glucagon-like peptide-1 and glucagon receptor agonist cotadutide on kidney outcomes in patients with diabetic kidney disease. Kidney Int 2024; 106:1170-1180. [PMID: 39218393 DOI: 10.1016/j.kint.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Cotadutide is a glucagon-like peptide-1 (GLP-1) and glucagon receptor agonist that may improve kidney function in patients with type 2 diabetes (T2D) and chronic kidney disease (CKD). In this phase 2b study, patients with T2D and CKD (estimated glomerular filtration rate [eGFR] of 20 or more and under 90 mL/min per 1.73 m2 and urinary albumin-to-creatinine ratio [UACR] over 50 mg/g) were randomized 1:1:1:1:1 to 26 weeks' treatment with standard of care plus subcutaneous cotadutide uptitrated to 100, 300, or 600 μg, or placebo daily (double-blind), or the GLP-1 agonist semaglutide 1 mg once weekly (open-label).The co-primary endpoints were absolute and percentage change versus placebo in UACR from baseline to the end of week 14. Among 248 randomized patients, mean age 67.1 years, 19% were female, mean eGFR was 55.3 mL/min per 1.73 m2, geometric mean was UACR 205.5 mg/g (coefficient of variation 270.0), and 46.8% were receiving concomitant sodium-glucose co-transporter 2 inhibitors. Cotadutide dose-dependently reduced UACR from baseline to the end of week 14, reaching significance at 300 μg (-43.9% [95% confidence interval -54.7 to -30.6]) and 600 μg (-49.9% [-59.3 to -38.4]) versus placebo; with effects sustained at week 26. Serious adverse events were balanced across arms. Safety and tolerability of cotadutide 600 μg were comparable to semaglutide. Thus, our study shows that in patients with T2D and CKD, cotadutide significantly reduced UACR on top of standard of care with an acceptable tolerability profile, suggesting kidney protective benefits that need confirmation in a larger study.
Collapse
Affiliation(s)
- Viknesh Selvarajah
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Darren Robertson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Lars Hansen
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kirsten Smith
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Angela Coggi
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - José Sánchez
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Yi-Ting Chang
- Oncology Biometrics, late Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Hongtao Yu
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Joanna Parkinson
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anis Khan
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - H Sophia Chung
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Sonja Hess
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Richard Dumas
- CISSS Laval, Medecine Department, Endocrinology Division, Laval, Quebec, Canada; Centre de recherches cliniques de Laval, Laval, Quebec, Canada
| | - Tabbatha Duck
- Division of Nephrology, Clinical Research Solutions, Waterloo, Ontario, Canada
| | - Simran Jolly
- Department of Arts and Science, McMaster University, Hamilton, Ontario, Canada
| | | | - John Baker
- Aoteoroa Clinical Trials, Middlemore Hospital, Auckland, New Zealand
| | - Albert Lecube
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital and Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Karl-Michael Derwahl
- Institute for Clinical Research and Development, Practise of Endocrinology, Berlin, Germany
| | | | | | - Carl Peters
- Diabetes Services, Te Whatu Ora Waitemata, Auckland, New Zealand
| | | | - Victoria E R Parker
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; The George Institute for Global Health, Sydney, Australia.
| |
Collapse
|
4
|
Shi J, Xu A, Huang L, Liu S, Wu B, Zhang Z. Immune Microenvironment Alterations and Identification of Key Diagnostic Biomarkers in Chronic Kidney Disease Using Integrated Bioinformatics and Machine Learning. Pharmgenomics Pers Med 2024; 17:497-510. [PMID: 39588536 PMCID: PMC11586269 DOI: 10.2147/pgpm.s488143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Background Chronic kidney disease (CKD) involves complex immune dysregulation and altered gene expression profiles. This study investigates immune cell infiltration, differential gene expression, and pathway enrichment in CKD patients to identify key diagnostic biomarkers through machine learning methods. Methods We assessed immune cell infiltration and immune microenvironment scores using the xCell algorithm. Differentially expressed genes (DEGs) were identified using the limma package. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed to evaluate pathway enrichment. Machine learning techniques (LASSO and Random Forest) pinpointed diagnostic genes. A nomogram model was constructed and validated for diagnostic prediction. Spearman correlation explored associations between key genes and immune cell recruitment. Results The CKD group exhibited significantly altered immune cell infiltration and increased immune microenvironment scores compared to the normal group. We identified 2335 DEGs, including 124 differentially expressed immune-related genes. GSEA highlighted significant enrichment of inflammatory and immune pathways in the high immune score (HIS) subgroup, while GSVA indicated upregulation of immune responses and metabolic processes in HIS. Machine learning identified four key diagnostic genes: RGS1, IL4I1, NR4A3, and SOCS3. Validation in an independent dataset (GSE96804) and clinical samples confirmed their diagnostic potential. The nomogram model integrating these genes demonstrated high predictive accuracy. Spearman correlation revealed positive associations between the key genes and various immune cells, indicating their roles in immune modulation and CKD pathogenesis. Conclusion This study provides a comprehensive analysis of immune alterations and gene expression profiles in CKD. The identified diagnostic genes and the constructed nomogram model offer potent tools for CKD diagnosis. The immunomodulatory roles of RGS1, IL4I1, NR4A3, and SOCS3 warrant further investigation as potential therapeutic targets in CKD.
Collapse
Affiliation(s)
- Jinbao Shi
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Aliang Xu
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Liuying Huang
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Shaojie Liu
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Binxuan Wu
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| | - Zuhong Zhang
- Department of Nephrology, Ningde Hospital of Traditional Chinese Medicine, Ningde, Fujian, People’s Republic of China
| |
Collapse
|
5
|
Qing J, Li C, Zhi H, Zhang L, Wu J, Li Y. Exploring macrophage heterogeneity in IgA nephropathy: Mechanisms of renal impairment and current therapeutic targets. Int Immunopharmacol 2024; 140:112748. [PMID: 39106714 DOI: 10.1016/j.intimp.2024.112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
The lack of understanding of the mechanism of renal injury in IgA nephropathy (IgAN) hinders the development of personalized treatment plans and targeted therapies. Improved insight into the cause of renal dysfunction in IgAN is necessary to enhance the effectiveness of strategies for slowing the progression of the disease. This study examined single cell RNA sequencing (scRNA seq) and bulk-RNA seq data and found that the gene expression of renal intrinsic cells (RIC) was significantly changed in patients with renal impairment, with a primary focus on energy metabolism. We discovered a clear metabolic reprogramming of RIC during renal function impairment (RF) using the 'scMetabolism' package, which manifested as a weakening of oxidative phosphorylation, alterations in fatty acid metabolism, and changes in glycolysis. Cellular communication analysis revealed that communication between macrophages (Ma) and RIC became more active and impacted cell function through the ligand-receptor-transcription factor (L-R-TF) axis in patients with RF. Our studies showed a notable upsurge in the expression of gene CLU and the infiltration of CLU+ Ma in patients with RF. CLU is a multifunctional protein, extensively involved in processes such as cell apoptosis and immune responses. Data obtained from the Nephroseq V5 database and multiplex immunohistochemistry (mIHC) were used to validate the findings, which were found to be robustly correlated with estimated glomerular filtration rate (eGFR) of the IgAN patients, as demonstrated by linear regression (LR). This study provides new insights into the cellular and molecular changes that occur in IgAN during renal impairment, revealing that elevated expression of CLU and CLU+ Ma percolation are common features in patients with RF. These findings offer potential targets and strategies for personalized management and targeted therapy of IgAN.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Changqun Li
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Huiwen Zhi
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Lijuan Zhang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Junnan Wu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Hejin Municipal People's Hospital, Yuncheng 043300, China.
| |
Collapse
|
6
|
Liu C, Wei W, Huang Y, Fu P, Zhang L, Zhao Y. Metabolic reprogramming in septic acute kidney injury: pathogenesis and therapeutic implications. Metabolism 2024; 158:155974. [PMID: 38996912 DOI: 10.1016/j.metabol.2024.155974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Acute kidney injury (AKI) is a frequent and severe complication of sepsis and is characterized by significant mortality and morbidity. However, the pathogenesis of septic acute kidney injury (S-AKI) remains elusive. Metabolic reprogramming, which was originally referred to as the Warburg effect in cancer, is strongly related to S-AKI. At the onset of sepsis, both inflammatory cells and renal parenchymal cells, such as macrophages, neutrophils and renal tubular epithelial cells, undergo metabolic shifts toward aerobic glycolysis to amplify proinflammatory responses and fortify cellular resilience to septic stimuli. As the disease progresses, these cells revert to oxidative phosphorylation, thus promoting anti-inflammatory reactions and enhancing functional restoration. Alterations in mitochondrial dynamics and metabolic reprogramming are central to the energetic changes that occur during S-AKI. In this review, we summarize the current understanding of the pathogenesis of metabolic reprogramming in S-AKI, with a focus on each cell type involved. By identifying relevant key regulatory factors, we also explored potential metabolic reprogramming-related therapeutic targets for the management of S-AKI.
Collapse
Affiliation(s)
- Caihong Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Wei
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yongxiu Huang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuliang Zhao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Juszczak F, Arnould T, Declèves AE. The Role of Mitochondrial Sirtuins (SIRT3, SIRT4 and SIRT5) in Renal Cell Metabolism: Implication for Kidney Diseases. Int J Mol Sci 2024; 25:6936. [PMID: 39000044 PMCID: PMC11241570 DOI: 10.3390/ijms25136936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.
Collapse
Affiliation(s)
- Florian Juszczak
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61, Rue de Bruxelles, 5000 Namur, Belgium;
| | - Anne-Emilie Declèves
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| |
Collapse
|
8
|
Fan X, Yang M, Lang Y, Lu S, Kong Z, Gao Y, Shen N, Zhang D, Lv Z. Mitochondrial metabolic reprogramming in diabetic kidney disease. Cell Death Dis 2024; 15:442. [PMID: 38910210 PMCID: PMC11194272 DOI: 10.1038/s41419-024-06833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Diabetic kidney disease, known as a glomerular disease, arises from a metabolic disorder impairing renal cell function. Mitochondria, crucial organelles, play a key role in substance metabolism via oxidative phosphorylation to generate ATP. Cells undergo metabolic reprogramming as a compensatory mechanism to fulfill energy needs for survival and growth, attracting scholarly attention in recent years. Studies indicate that mitochondrial metabolic reprogramming significantly influences the pathophysiological progression of DKD. Alterations in kidney metabolism lead to abnormal expression of signaling molecules and activation of pathways, inducing oxidative stress-related cellular damage, inflammatory responses, apoptosis, and autophagy irregularities, culminating in renal fibrosis and insufficiency. This review delves into the impact of mitochondrial metabolic reprogramming on DKD pathogenesis, emphasizing the regulation of metabolic regulators and downstream signaling pathways. Therapeutic interventions targeting renal metabolic reprogramming can potentially delay DKD progression. The findings underscore the importance of focusing on metabolic reprogramming to develop safer and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Dongdong Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
9
|
Chen Z, Zhang X. The role of metabolic reprogramming in kidney cancer. Front Oncol 2024; 14:1402351. [PMID: 38884097 PMCID: PMC11176489 DOI: 10.3389/fonc.2024.1402351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Metabolic reprogramming is a cellular process in which cells modify their metabolic patterns to meet energy requirements, promote proliferation, and enhance resistance to external stressors. This process also introduces new functionalities to the cells. The 'Warburg effect' is a well-studied example of metabolic reprogramming observed during tumorigenesis. Recent studies have shown that kidney cells undergo various forms of metabolic reprogramming following injury. Moreover, metabolic reprogramming plays a crucial role in the progression, prognosis, and treatment of kidney cancer. This review offers a comprehensive examination of renal cancer, metabolic reprogramming, and its implications in kidney cancer. It also discusses recent advancements in the diagnosis and treatment of renal cancer.
Collapse
Affiliation(s)
- Ziyi Chen
- The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Xiaohong Zhang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Saxena S, Dagar N, Shelke V, Lech M, Khare P, Gaikwad AB. Metabolic reprogramming: Unveiling the therapeutic potential of targeted therapies against kidney disease. Drug Discov Today 2023; 28:103765. [PMID: 37690600 DOI: 10.1016/j.drudis.2023.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
As a high-metabolic-rate organ, the kidney exhibits metabolic reprogramming (MR) in various disease states. Given the >800 million cases of kidney disease worldwide in 2022, understanding the specific bioenergetic pathways involved and developing targeted interventions are vital needs. The reprogramming of metabolic pathways (glucose metabolism, amino acid metabolism, etc.) has been observed in kidney disease. Therapies targeting these specific pathways have proven to be an efficient approach for retarding kidney disease progression. In this review, we focus on potential pharmacological interventions targeting MR that have advanced through Phase III/IV clinical trials for the management of kidney disease and promising preclinical studies laying the groundwork for future clinical investigations.
Collapse
Affiliation(s)
- Shubhangi Saxena
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Maciej Lech
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Pragyanshu Khare
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
11
|
Kayhan M, Vouillamoz J, Rodriguez DG, Bugarski M, Mitamura Y, Gschwend J, Schneider C, Hall A, Legouis D, Akdis CA, Peter L, Rehrauer H, Gewin L, Wenger RH, Khodo SN. Intrinsic TGF-β signaling attenuates proximal tubule mitochondrial injury and inflammation in chronic kidney disease. Nat Commun 2023; 14:3236. [PMID: 37270534 PMCID: PMC10239443 DOI: 10.1038/s41467-023-39050-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Excessive TGF-β signaling and mitochondrial dysfunction fuel chronic kidney disease (CKD) progression. However, inhibiting TGF-β failed to impede CKD in humans. The proximal tubule (PT), the most vulnerable renal segment, is packed with giant mitochondria and injured PT is pivotal in CKD progression. How TGF-β signaling affects PT mitochondria in CKD remained unknown. Here, we combine spatial transcriptomics and bulk RNAseq with biochemical analyses to depict the role of TGF-β signaling on PT mitochondrial homeostasis and tubulo-interstitial interactions in CKD. Male mice carrying specific deletion of Tgfbr2 in the PT have increased mitochondrial injury and exacerbated Th1 immune response in the aristolochic acid model of CKD, partly, through impaired complex I expression and mitochondrial quality control associated with a metabolic rewiring toward aerobic glycolysis in the PT cells. Injured S3T2 PT cells are identified as the main mediators of the maladaptive macrophage/dendritic cell activation in the absence of Tgfbr2. snRNAseq database analyses confirm decreased TGF-β receptors and a metabolic deregulation in the PT of CKD patients. This study describes the role of TGF-β signaling in PT mitochondrial homeostasis and inflammation in CKD, suggesting potential therapeutic targets that might be used to mitigate CKD progression.
Collapse
Affiliation(s)
- Merve Kayhan
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Andrew Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - David Legouis
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, Hospital and University of Geneva, Geneva, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | - Leary Peter
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Leslie Gewin
- Department of Internal Medicine, Division of Nephrology, Washington University, St. Louis, USA
- Department of Medicine, St. Louis Veterans Affairs, St. Louis, USA
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
12
|
Gui Y, Tao J, Wang Y, Palanza Z, Qiao Y, Hargis G, Kreutzer DL, Liu S, Bastacky SI, Wang Y, Yu Y, Fu H, Zhou D. Calponin 2 harnesses metabolic reprogramming to determine kidney fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522608. [PMID: 36711748 PMCID: PMC9881848 DOI: 10.1101/2023.01.03.522608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the fibrotic kidneys, the extent of a formed deleterious microenvironment is determined by cellular mechanical forces. This process requires metabolism for energy; however, how cellular mechanics and metabolism are connected remains unclear. Our proteomics revealed that actin filament binding and cell metabolism are the two most dysregulated events in the fibrotic kidneys. As a prominent actin stabilizer, Calponin 2 (CNN2) is predominantly expressed in fibroblasts and pericytes. CNN2 knockdown preserves kidney function and alleviates fibrosis. Global proteomics profiled that CNN2 knockdown enhanced the activities of the key rate-limiting enzymes and regulators of fatty acid oxidation (FAO) in diseased kidneys. Inhibiting carnitine palmitoyltransferase 1α in the FAO pathway results in lipid accumulation and extracellular matrix deposition in the fibrotic kidneys, which were restored after CNN2 knockdown. In patients, increased serum CNN2 levels are correlated with lipid content. Bioinformatics and chromatin immunoprecipitation showed that CNN2 interactor, estrogen receptor 2 (ESR2) binds peroxisome proliferator-activated receptor-α (PPARα) to transcriptionally regulate FAO downstream target genes expression amid kidney fibrosis. In vitro , ESR2 knockdown repressed the mRNA levels of PPARα and the key genes in the FAO pathway. Conversely, activation of PPARα reduced CNN2-induced matrix inductions. Our results suggest that balancing cell mechanics and metabolism is crucial to develop therapeutic strategies to halt kidney fibrosis.
Collapse
|
13
|
Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors—Perspectives from metabolic reprogramming. EBioMedicine 2022; 83:104215. [PMID: 35973390 PMCID: PMC9396537 DOI: 10.1016/j.ebiom.2022.104215] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors, initially developed as a novel class of anti-hyperglycaemic drugs, have been shown to significantly improve metabolic indicators and protect the kidneys and heart of patients with or without type 2 diabetes mellitus. The possible mechanisms mediating these unexpected cardiorenal benefits are being extensively investigated because they cannot solely be attributed to improvements in glycaemic control. Notably, emerging data indicate that metabolic reprogramming is involved in the progression of cardiorenal metabolic diseases. SGLT2 inhibitors reprogram systemic metabolism to a fasting-like metabolic paradigm, involving the metabolic switch from carbohydrates to other energetic substrates and regulation of the related nutrient-sensing pathways, which might explain some of their cardiorenal protective effects. In this review, we will focus on the current understanding of cardiorenal protection by SGLT2 inhibitors, specifically its relevance to metabolic reprogramming.
Collapse
|