1
|
Yao T, Gao J, You C, Xu Y, Qiao D, Shen S, Ma J. A new animal model of lumbar disc degeneration in rabbits. Spine J 2024; 24:1519-1526. [PMID: 38437919 DOI: 10.1016/j.spinee.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/21/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND CONTEXT There are many models of lumbar disc degeneration, but mechanical stress-induced lumbar disc degeneration is rare. Here we propose a mechanical stress-induced lumbar disc degeneration model to better understand the molecular mechanism of lumbar disc degeneration under stress stimulation. PURPOSE To design a new model of lumbar disc degeneration under mechanical stress. STUDY DESIGN The anatomic approach of the oblique lateral approach to lumbar fusion surgery was used to design a longitudinal compression device across the vertebral body of the rabbit to impose longitudinal load on the lumbar disc. METHODS New Zealand white rabbits (n=30) were used. Screws were used to cross the rabbits' lumbar vertebral bodies, and both sides of the screws were pressurized. Continuous compression was then performed for 28 days. Adjacent unpressurized lumbar discs serve as controls for pressurized lumbar discs. At 28 days after surgery, micro-computed tomography (CT) and magnetic resonance imaging (MRI) were performed on the rabbits' lumbar discs. After the imaging examination, lumbar disc samples were removed, Safranin-O fast green and immunofluorescence was performed to detect the expression level of intervertebral disc degeneration-related proteins. RESULTS The CT results showed that the disc height did not decrease significantly after mechanical loading. The MRI results showed that the signals in the pressurized disc decreased 28 days after loading. The results of Safranin-O fast green showed that the cartilage component of the intervertebral disc after mechanical compression was significantly reduced. The immunofluorescence results showed that the expression of ADAMTS5 and MMP13 protein in the nucleus pulposus of the intervertebral disc after mechanical compression increased, while the expression of SOX9 decreased, and the difference was statistically significant. Aggrecan's protein expression decreased, but was not statistically significant. CONCLUSIONS This study designed a reliable model of disc degeneration in rabbits. It is more likely to mimic disc compression in the human body. CLINICAL SIGNIFICANCE This animal model can be used as a basic model to study the molecular physiological mechanisms of discogenic low back pain.
Collapse
Affiliation(s)
- Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China
| | - Chenan You
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Shaoxing University School of Medicine, Zhejiang Province, China
| | - Yining Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Shaoxing University School of Medicine, Zhejiang Province, China
| | - Di Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Shaoxing University School of Medicine, Zhejiang Province, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
2
|
Ekşi MŞ, Orhun Ö, Yaşar AH, Dursun AT, Berikol G, Börekci A, Özcan-Ekşi EE. At What Speed Does Spinal Degeneration Gear Up?: Aging Paradigm in Patients with Low Back Pain. Clin Neurol Neurosurg 2022; 215:107187. [DOI: 10.1016/j.clineuro.2022.107187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
|
3
|
Huang J, Zhou Q, Ren Q, Luo L, Ji G, Zheng T. Endoplasmic reticulum stress associates with the development of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1094394. [PMID: 36714579 PMCID: PMC9877331 DOI: 10.3389/fendo.2022.1094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important player in various intracellular signaling pathways that regulate cellular functions in many diseases. Intervertebral disc degeneration (IDD), an age-related degenerative disease, is one of the main clinical causes of low back pain. Although the pathological development of IDD is far from being fully elucidated, many studies have been shown that ER stress (ERS) is involved in IDD development and regulates various processes, such as inflammation, cellular senescence and apoptosis, excessive mechanical loading, metabolic disturbances, oxidative stress, calcium homeostasis imbalance, and extracellular matrix (ECM) dysregulation. This review summarizes the formation of ERS and the potential link between ERS and IDD development. ERS can be a promising new therapeutic target for the clinical management of IDD.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Liliang Luo
- Department of Orthopedics, Shangyou Hospital of traditional Chinese Medicine, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tiansheng Zheng,
| |
Collapse
|