1
|
Shao N, Ding Z, Liu F, Zhang X, Wang X, Hu S, Ye S, Wang T, Si W, Cai B. Huang-Pu-Tong-Qiao Formula Alleviates Hippocampal Neuron Damage by Inhibiting NLRP3 Inflammasome-mediated Pyroptosis in Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04547-0. [PMID: 39466576 DOI: 10.1007/s12035-024-04547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Huang-Pu-Tong-Qiao (HPTQ), a Traditional Chinese Medicine formula, has achieved remarkable efficacy in clinically treating Alzheimer's disease (AD). Pyroptosis refers to the inflammatory necrosis of cells, which contributes to AD pathological progression. However, it is unclear whether the therapeutic effect of HPTQ on AD is related to reducing pyroptosis. In this study, the network pharmacology analysis was used to predict the molecular mechanism of HPTQ in treating AD and validated our hypothesis through mice and cell experiments. APP/PS1 transgenic mice and Aβ25-35-injured HT22 cells were used as AD models in vivo and in vitro. The pharmacological effects and mechanisms of HPTQ on AD were evaluated by Morris water maze, Y-maze, transmission electron microscope, immunofluorescence, Hoechst/PI staining, western blot, and ELISA. Network pharmacology reveals the correlation between the therapeutic effect of HPTQ on AD and the NOD-like receptor signaling pathway. In APP/PS1 mice, HPTQ reduced the escape latency and maintained cell membrane integrity. In HT22 cells, 15% HPTQ-medicated serum and 10 µM MCC950 increased cell viability and decreased PI positive rate compared with the Model group. In addition, HPTQ treatment in AD animal and cell models reduced the protein expressions of NLRP3, ASC, cleaved caspase-1, GSDMD, GSDMD-N, IL-1β, and IL-18. The experimental results of MCC950 specifically inhibiting the NLRP3 expression suggested that HPTQ might reduce neuronal pyroptosis by reducing NLRP3 inflammasome. Network pharmacology and experimental validation suggested that HPTQ alleviated NLRP3 inflammasome-mediated neuronal pyroptosis in AD, which could provide valuable candidate drugs for AD clinical treatment.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhixian Ding
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fei Liu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoyan Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaojuan Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shenglin Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Shu Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Tingting Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Wenwen Si
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Anhui University of Chinese Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
2
|
Xu ZY, Fu SX, Zhao HC, Wang YM, Liu Y, Ma JY, Yu Y, Zhang JL, Han ZP, Zheng MX. Dynamic changes in key factors of the blood-brain barrier in early diabetic mice. J Neuropathol Exp Neurol 2024; 83:763-771. [PMID: 38874450 DOI: 10.1093/jnen/nlae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Chronic hyperglycemia can result in damage to the hippocampus and dysfunction of the blood-brain barrier (BBB), potentially leading to neurological disorders. This study examined the histological structure of the hippocampus and the expression of critical genes associated with the BBB at 2 early stage time points in a streptozotocin-induced diabetes mellitus (DM) mouse model. Routine histology revealed vascular congestion and dilation of Virchow-Robin spaces in the hippocampal CA1 region of the DM group. Neuronal alterations included rounding and swelling and reduction in Nissl bodies and increased apoptosis. Compared to the control group, TJP1 mRNA expression in the DM group was significantly lower (P < .05 or P < .01), while mRNA levels of JAM3, TJP3, CLDN5, CLDN3, and OCLN initially increased and then decreased. At 7, 14, and 21 days, mRNA levels of the receptor for advanced glycation end products (AGER) were greater in the DM group than in the control group (P < .05 or P < .01). These findings indicate that early-stage diabetes may cause structural and functional impairments in hippocampal CA1 in mice. These abnormalities may parallel alterations in the expression of key BBB tight junction molecules and elevated AGER expression in early DM patients.
Collapse
Affiliation(s)
- Zhi-Yong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shu-Xian Fu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hui-Chao Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yin-Min Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Liu
- The 83rd Army Group Hospital of the Chinese People's Liberation Army, Xinxiang, China
| | - Jin-You Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jia-Le Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhan-Peng Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ming-Xue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
3
|
张 笑, 王 谢, 王 杰, 邵 楠, 蔡 标, 谢 道. [ Huangpu Tongqiao Capsule improves cognitive impairment in rats with Wilson disease by inhibiting endoplasmic reticulum stress-mediated apoptosis pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:447-454. [PMID: 38597435 PMCID: PMC11006687 DOI: 10.12122/j.issn.1673-4254.2024.03.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the neuroprotective effect of Huangpu Tongqiao Capsule (HPTQ) in a rat model of Wilson disease (WD) and explore the underlying mechanisms. METHODS SD rat models of WD were established by feeding of coppersupplemented chow diet and drinking water for 12 weeks, and starting from the 9th week, the rats were treated with low-, moderate- and high-dose HPTQ, penicillamine, or normal saline by gavage on a daily basis for 3 weeks. Copper levels in the liver and 24-h urine of the rats were detected, and their learning and memory abilities were evaluated using Morris water maze test. HE staining was used to observe morphological changes of CA1 region neurons in the hippocampus, and neuronal apoptosis was detected with TUNEL staining. Hippocampal expressions of endoplasmic reticulum stress (ERS)-mediated apoptosis pathway-related proteins GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 at both the mRNA and protein levels were detected using RT-qPCR, immunofluorescence assay or Western blotting. RESULTS Compared with normal control rats, the rat models with copper overload-induced WD exhibited significantly increased copper levels in both the liver and 24-h urine, impaired learning and memory abilities, obvious hippocampal neuronal damage in the CA1 region and increased TUNEL-positive neurons (P<0.01), with also lowered mRNA and protein expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the hippocampus (all P<0.01). Treatments with HPTQ and penicillamine significantly lowered copper level in the liver but increased urinary copper level, improved learning and memory ability, alleviated neuronal damage and apoptosis in the hippocampus, and decreased hippocampal expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the rat models (P<0.01 or 0.05). CONCLUSION HPTQ Capsule has neuroprotective effects in rat models of WD possibly by inhibiting ERS-mediated apoptosis pathway.
Collapse
Affiliation(s)
- 笑颜 张
- 安徽中医药大学中西医结合学院,安徽 合肥 230012School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 谢 王
- 安徽中医药大学第一临床医学院,安徽 合肥 230012First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 杰 王
- 安徽中医药大学护理学院,安徽 合肥 230012School of Nursing, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 楠 邵
- 安徽中医药大学中西医结合学院,安徽 合肥 230012School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 标 蔡
- 安徽中医药大学中西医结合学院,安徽 合肥 230012School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 道俊 谢
- 安徽中医药大学第一附属医院脑病中心,安徽 合肥 230031Encephalopathy Center, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| |
Collapse
|
4
|
Wang HJ, Zhang LB, Sun SP, Yan QT, Gao ZQ, Fu FM, Qu MH. Duodenal-jejunal bypass improves hypothalamic oxidative stress and inflammation in diabetic rats via glucagon-like peptide 1-mediated Nrf2/HO-1 signaling. World J Diabetes 2024; 15:287-304. [PMID: 38464379 PMCID: PMC10921169 DOI: 10.4239/wjd.v15.i2.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is often accompanied by impaired glucose utilization in the brain, leading to oxidative stress, neuronal cell injury and infla-mmation. Previous studies have shown that duodenal jejunal bypass (DJB) surgery significantly improves brain glucose metabolism in T2DM rats, the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear. AIM To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats. METHODS A T2DM rat model was induced via a high-glucose and high-fat diet, combined with a low-dose streptozotocin injection. T2DM rats were divided into DJB operation and Sham operation groups. DJB surgical intervention was carried out on T2DM rats. The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis. Proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry, quantitative real-time PCR, Western blotting, and immunofluorescence. RESULTS Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery, compared to the T2DM-Sham groups of rats. Oxidative stress-related proteins (glucagon-like peptide 1 receptor, Nrf2, and HO-1) were significantly increased (P < 0.05) in the hypothalamus of rats with T2DM after DJB surgery. DJB surgery significantly reduced (P < 0.05) hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin (IL)-1β and IL-6. DJB surgery significantly reduced (P < 0.05) the expression of factors related to neuronal injury (glial fibrillary acidic protein and Caspase-3) in the hypothalamus of T2DM rats and upregulated (P < 0.05) the expression of neuroprotective factors (C-fos, Ki67, Bcl-2, and BDNF), thereby reducing hypothalamic injury in T2DM rats. CONCLUSION DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Huai-Jie Wang
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261041, Shandong Province, China
| | - Li-Bin Zhang
- Department of Endocrinology, Weifang Second People's Hospital, Weifang 261041, Shandong Province, China
| | - Si-Peng Sun
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261041, Shandong Province, China
| | - Qing-Tao Yan
- Department of Pediatric Surgery, Weifang People’s Hospital, Weifang 261041, Shandong Province, China
| | - Zhi-Qin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Fang-Ming Fu
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| | - Mei-Hua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261041, Shandong Province, China
| |
Collapse
|
5
|
Tavan M, Hanachi P, de la Luz Cádiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 2024; 49:306-326. [PMID: 37940760 DOI: 10.1007/s11064-023-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | | | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
6
|
QIAO L, SHI Y, TAN L, JIANG Y, YANG Y. Efficacy of electroacupuncture stimulating Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6) on spatial learning and memory deficits in rats with insomnia induced by para-chlorophenylalanine: a single acupoint combined acupoints. J TRADIT CHIN MED 2023; 43:704-714. [PMID: 37454255 PMCID: PMC10320443 DOI: 10.19852/j.cnki.jtcm.20230308.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To investiage the effect of electroacupuncture (EA) at a single acupoint of Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6) and at combined acupoints of Shenmen (HT7) and Baihui (GV20) and Sanyinjiao (SP6) on the PKA/CREB and BDNF/TrkB signaling, as well as neuroapoptosis and neurogenesis in hippocampus and elucidate the underlying mechanism of single and combined acupoints on ameliorating spatial learning and memory deficits in a rat model of primary insomnia. METHODS Primary insomnia was modeled by intraperitoneal injection of para-chlorophenylalanine (PCPA) once daily for 2 d. EA was applied at Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6), or Shenmen (HT7) + Baihui (GV20) + Sanyinjiao (SP6) (combined) for 30 min daily for 4 d. Spatial learning and memory function was evaluated by the Morris water maze (MWM) test. Protein expressions of hippocampal cAMP-dependent protein kinase (PKA)-Cβ, phosphorylated cAMP-responsive element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and tyrosine kinase receptor B (TrkB) were evaluated by Western blotting. Neuronal apoptosis in the hippocampus was detected with the transferase-mediated dUTP-X nick end labeling assay. Endogenous neurogenesis was examined with bromodeoxyuridine staining. The MWM test and hippocampal p-CREB, BDNF, and TrkB protein levels in the combined acupoints group were evaluated after the administration of a PKA-selective inhibitor (H89). RESULTS Spatial learning and memory were significantly impaired in rats with insomnia. The spatial learning deficits were ameliorated in the Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6), and combined groups; this improvement was significantly greater in the combined group than the single acupoint groups. The spatial memory impairment was improved in the combined, Baihui (GV20), and Shenmen (HT7) groups, but not the Sanyinjiao (SP6) group. The expressions of PKA-Cβ, p-CREB, BDNF, and TrkB were decreased in rats with insomnia. All these proteins were significantly upregulated in the combined group. PKA/p-CREB protein levels were elevated in the Baihui (GV20) and Shenmen (HT7) groups, whereas BDNF/TrkB expression was upregulated in the Sanyinjiao (SP6) group. The staining results showed significant attenuation of hippocampal cell apoptosis and increased numbers of proliferating cells in the combined group, whereas the single acupoint groups only showed decreased numbers of apoptotic cells. In the combined group, the PKA inhibitor reversed the improvement of spatial memory and upregulation of p-CREB expression caused by EA, but did not affect its activation of BDNF/TrkB signaling. CONCLUSIONS EA at the single acupoints Baihui (GV20), Shenmen (HT7), or Sanyinjiao (SP6) had an ameliorating effect on the spatial learning and memory deficits induced by insomnia. EA at combined acupoints exerted a synergistic effect on the improvements in spatial learning and memory impairment in rats with insomnia by upregulating the hippocampal PKA/CREB and BDNF/TrkB signaling, facilitating neurogenesis, and inhibiting neuronal apoptosis. These findings indicate that EA at combined acupoints [(Baihui (GV20), Shenmen (HT7), and Sanyinjiao (SP6)] achieves a more pronounced regulation of hippocampal neuroplasticity than EA at single acupoints, which may partly explain the underlying mechanisms by which EA at combined acupoints exerts a better ameliorative effect on the cognitive dysfunction caused by insomnia.
Collapse
Affiliation(s)
- Lina QIAO
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yinan SHI
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Lianhong TAN
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yanshu JIANG
- 2 College of Acupuncture-moxibustion and Massage, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Yongsheng YANG
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| |
Collapse
|
7
|
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023; 28:5415. [PMID: 37513286 PMCID: PMC10385962 DOI: 10.3390/molecules28145415] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in people's longevity has, consequently, led to more brain involvement and neurodegenerative diseases, which can become complicated and lead to chronic degenerative diseases, thereby presenting greater public health problems. Medicinal plants have been used since ancient times and contain high concentrations of molecules, including polyphenols. It has been proven that polyphenols, which are present in various natural sources can provide curative effects against various diseases and brain disorders through neuroprotective effects. These neuroprotective effects are mainly attributed to their ability to cross the blood-brain barrier, eliminate reactive oxygen species, and cause the chelation of metal ions. Polyphenols increase the concentration of neurotrophic factors and bind directly to the membrane receptors of these neurotrophic factors, to modulate and activate the signaling cascades that allow the plasticity, survival, proliferation, and growth of neuronal cells, thereby allowing for better learning, memory, and cognition. Moreover, polyphenols have no serious adverse side effects resulting from their consumption.
Collapse
Affiliation(s)
- Raziel Alejandro Arias-Sánchez
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| | - Luz Torner
- Centro de Investigaciones Biomédicas de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| | - Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| |
Collapse
|
8
|
Choi GY, Kim HB, Cho JM, Sreelatha I, Lee IS, Kweon HS, Sul S, Kim SA, Maeng S, Park JH. Umbelliferone Ameliorates Memory Impairment and Enhances Hippocampal Synaptic Plasticity in Scopolamine-Induced Rat Model. Nutrients 2023; 15:nu15102351. [PMID: 37242234 DOI: 10.3390/nu15102351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by memory loss and cognitive decline. Among the suggested pathogenic mechanisms of AD, the cholinergic hypothesis proposes that AD symptoms are a result of reduced synthesis of acetylcholine (ACh). A non-selective antagonist of the muscarinic ACh receptor, scopolamine (SCOP) induced cognitive impairment in rodents. Umbelliferone (UMB) is a Apiaceae-family-derived 7-hydeoxycoumarin known for its antioxidant, anti-tumor, anticancer, anti-inflammatory, antibacterial, antimicrobial, and antidiabetic properties. However, the effects of UMB on the electrophysiological and ultrastructure morphological aspects of learning and memory are still not well-established. Thus, we investigated the effect of UMB treatment on cognitive behaviors and used organotypic hippocampal slice cultures for long-term potentiation (LTP) and the hippocampal synaptic ultrastructure. A hippocampal tissue analysis revealed that UMB attenuated a SCOP-induced blockade of field excitatory post-synaptic potential (fEPSP) activity and ameliorated the impairment of LTP by the NMDA and AMPA receptor antagonists. UMB also enhanced the hippocampal synaptic vesicle density on the synaptic ultrastructure. Furthermore, behavioral tests on male SD rats (7-8 weeks old) using the Y-maze test, passive avoidance test (PA), and Morris water maze test (MWM) showed that UMB recovered learning and memory deficits by SCOP. These cognitive improvements were in association with the enhanced expression of BDNF, TrkB, and the pCREB/CREB ratio and the suppression of acetylcholinesterase activity. The current findings indicate that UMB may be an effective neuroprotective reagent applicable for improving learning and memory against AD.
Collapse
Affiliation(s)
- Ga-Young Choi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hyun-Bum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jae-Min Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Inturu Sreelatha
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - In-Seo Lee
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Sehyun Sul
- Undergraduate Programs, Rutgers University, 100 Rockafeller Road, Suite 1008, Piscataway, NJ 08854, USA
| | - Sun Ae Kim
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ji-Ho Park
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
9
|
Li X, Qin Y, Ye S, Song H, Zhou P, Cai B, Wang Y. Protective effect of Huangpu Tongqiao capsule against Alzheimer's disease through inhibiting the apoptosis pathway mediated by endoplasmic reticulum stress in vitro and in vivo. Saudi Pharm J 2022; 30:1561-1571. [PMID: 36465852 PMCID: PMC9715644 DOI: 10.1016/j.jsps.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022] Open
Abstract
Objectives Huangpu Tongqiao Capsule (HPTQC) is a traditional Chinese medicine (TCM) that has been used to treat Alzheimer's disease (AD). This study was to explore the pharmacological action and molecular mechanism of HPTQC in the treatment of AD. Methods The possible targets of HTPQC were predicted by the molecular docking technique. Intraperitoneal injection of D-galactose and bilateral injection of Aβ25-35 in hippocampus induced AD rat model. Morris water maze was used to observe learning and memory function. The primary hippocampal neurons were induced by Aβ25-35. Moreover, the apoptosis rate of hippocampal nerve cells was detected through AnnexinV/PI double standard staining. The mRNA and protein levels of GRP78, CHOP, Caspase 12, Caspase 9, and Caspase 3 were detected by PCR and western blot. Results The prediction results suggest that HPTQC may act on GRP78. HPTQC significantly improved the learning and memory function, and decreased neuronal apoptosis in vivo and in vitro. In addition, HPTQC could decrease the mRNA and protein expression levels of GRP78, CHOP, Caspase12, Caspase9, and Caspase3, and the effect trend was consistent with the specific inhibitor of GRP78. Conclusions HPTQC has a neuroprotective effect against AD by inhibiting the apoptosis pathway mediated by endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Xinquan Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yunpeng Qin
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shu Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
- Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Hefei 230012, China
| | - Yan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|