1
|
Kumar V, Kumar P. Pathophysiological role of high mobility group box-1 signaling in neurodegenerative diseases. Inflammopharmacology 2024:10.1007/s10787-024-01595-9. [PMID: 39546221 DOI: 10.1007/s10787-024-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Nucleocytoplasmic translocation of HMGB1 (high mobility group box-1) plays a significant role in disease progression. Several methods contribute to the translocation of HMGB1 from the nucleus to the cytoplasm, including inflammasome activation, TNF-α signaling, CRM1-mediated transport, reactive oxygen species (ROS), JAK/STAT pathway, RIP3-mediated p53 involvement, XPO-1-mediated transport, and calcium-dependent mechanisms. Due to its diverse functions at various subcellular locations, HMGB1 has been identified as a crucial factor in several Central Nervous System (CNS) disorders, including Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD). HMGB1 displays a wide array of roles in the extracellular environment as it interacts with several receptors, including CXCR4, TLR2, TLR4, TLR8, and RAGE, by engaging in these connections, HMGB1 can effectively regulate subsequent signaling pathways, hence exerting an impact on the progression of brain disorders through neuroinflammation. Therefore, focusing on treating neuroinflammation could offer a common therapeutic strategy for several disorders. The objective of the current literature is to demonstrate the pathological role of HMGB1 in various neurological disorders. This review also offers insights into numerous therapeutic targets that promise to advance multiple treatments intended to alleviate brain illnesses.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
2
|
Dong X, Ye Z, Li C, Li K, Zhong X, Li H. Mogroside Ⅴ Inhibits M1 Polarization and Inflammation of Diabetic Mouse Macrophages via p38 MAPK/NF-Κb Signaling Pathway. Immunol Invest 2024; 53:604-621. [PMID: 38415803 DOI: 10.1080/08820139.2024.2321353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND Mogroside V (MV) has anti-inflammatory properties. However, its impact on macrophage polarization under diabetic condition is yet unclear. This study aimed to investigate effects and underlying mechanisms of MV on inflammatory response and M1 polarization of bone marrow-derived macrophages (BMDMs) from diabetic mice. METHODS BMDMs were isolated from normal and diabetic C57BL/6 mice. LPS and IFN-γwere used to produce M1-polarized BMDMs. MV treatment was administered throughout the M1 polarization process with or without SB203580 or PDTC. Surface markers CD11b, F4/80 and CD86 of macrophages were identified using flow cytometry or immunofluorescence staining. Inflammatory cytokines IL-1β and IL-6 and phosphorylation levels of p65 and p38 were examined by western blot. RESULTS High glucose increased proportion of CD11b+F4/80+CD86+ cells, protein levels of inflammatory cytokines IL-1β and IL-6 and phosphorylation levels of p65 and p38 in LPS+IFN-γ-induced BMDMs, while they were decreased upon MV treatment. Additionally, these effects were further downregulated when MV was co-added with SB203580 or PDTC. CONCLUSIONS MV suppressed M1 macrophage polarization and inflammatory response, which was partially through NF-κB and p38 MAPK in LPS+IFN-γ induced BMDMs under high glucose condition, implying the potential of MV in treatment for inflammatory complications of diabetes.
Collapse
Affiliation(s)
- Xiaoyi Dong
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhimao Ye
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| | - Cuiping Li
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| | - Kongmei Li
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoxia Zhong
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Li
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Huang H, Peng Z, Zhan S, Li W, Liu D, Huang S, Zhu Y, Wang W. A comprehensive review of Siraitia grosvenorii (Swingle) C. Jeffrey: chemical composition, pharmacology, toxicology, status of resources development, and applications. Front Pharmacol 2024; 15:1388747. [PMID: 38638866 PMCID: PMC11024725 DOI: 10.3389/fphar.2024.1388747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Siraitia grosvenorii (Swingle) C. Jeffrey (S. grosvenorii), a perennial indigenous liana from the Cucurbitaceae family, has historically played a significant role in southern China's traditional remedies for various ailments. Its dual classification by the Chinese Ministry of Health for both medicinal and food utility underscores its has the potential of versatile applications. Recent research has shed light on the chemical composition, pharmacological effects, and toxicity of S. grosvenorii. Its active ingredients include triterpenoids, flavonoids, amino acids, volatile oils, polysaccharides, minerals, vitamins, and other microconstituents. Apart from being a natural sweetener, S. grosvenorii has been found to have numerous pharmacological effects, including alleviating cough and phlegm, preventing dental caries, exerting anti-inflammatory and anti-allergic effects, anti-aging and anti-oxidative, hypoglycemic, lipid-lowering, anti-depression, anti-fatigue, anti-schizophrenic, anti-Parkinson, anti-fibrotic, and anti-tumor activities. Despite its versatile potential, there is still a lack of systematic research on S. grosvenorii to date. This paper aims to address this gap by providing an overview of the main active components, pharmacological efficacy, toxicity, current status of development and application, development dilemmas, and strategies for intensive exploitation and utilization of S. grosvenorii. This paper aims to serve as a guide for researchers and practitioners committed to exploiting the biological resources of S. grosvenorii and further exploring its interdisciplinary potential.
Collapse
Affiliation(s)
- Huaxue Huang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Zhi Peng
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Shuang Zhan
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Wei Li
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Dai Liu
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Sirui Huang
- Research and Development Institute of Hunan Huacheng Biotech, Inc., Changsha, Hunan, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wei Wang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Wu J, Jian Y, Wang H, Huang H, Gong L, Liu G, Yang Y, Wang W. A Review of the Phytochemistry and Pharmacology of the Fruit of Siraitia grosvenorii (Swingle): A Traditional Chinese Medicinal Food. Molecules 2022; 27:6618. [PMID: 36235155 PMCID: PMC9572582 DOI: 10.3390/molecules27196618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Siraitia grosvenorii (Swingle) C. Jeffrey ex Lu et Z. Y. Zhang is a unique economic and medicinal plant of Cucurbitaceae in Southern China. For hundreds of years, Chinese people have used the fruit of S. grosvenorii as an excellent natural sweetener and traditional medicine for lung congestion, sore throat, and constipation. It is one of the first species in China to be classified as a medicinal food homology, which has received considerable attention as a natural product with high development potential. Various natural products, such as triterpenoids, flavonoids, amino acids, and lignans, have been released from this plant by previous phytochemical studies. Phar- macological research of the fruits of S. grosvenorii has attracted extensive attention, and an increasing number of extracts and compounds have been demonstrated to have antitussive, expectorant, antiasthmatic, antioxidant, hypoglycemic, immunologic, hepatoprotective, antibacte- rial, and other activities. In this review, based on a large number of previous studies, we summarized the related research progress of the chemical components and pharmacological effects of S. grosvenorii, which provides theoretical support for further investigation of its biological functions and potential clinical applications.
Collapse
Affiliation(s)
- Juanjiang Wu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huaxue Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- School of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Hunan Huacheng Biotech, Inc., High-Tech Zone, Changsha 410205, China
| | - Liming Gong
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- School of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Genggui Liu
- Hunan Huacheng Biotech, Inc., High-Tech Zone, Changsha 410205, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
A Novel Herbal Extract Blend Product Prevents Particulate Matters-Induced Inflammation by Improving Gut Microbiota and Maintaining the Integrity of the Intestinal Barrier. Nutrients 2022; 14:nu14102010. [PMID: 35631153 PMCID: PMC9145798 DOI: 10.3390/nu14102010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 02/05/2023] Open
Abstract
Air pollutants of PM2.5 can alter the composition of gut microbiota and lead to inflammation in the lung and gastrointestinal tract. The aim of this study was to evaluate the protective effect of a novel herbal extract blend, FC, composed of Lonicera japonica extract, Momordica grosvenori extract, and broccoli seed extract, on PM2.5-induced inflammation in the respiratory and intestinal tract. A549 cells and THP-1 cells, as well as C57BL/6 mice, were stimulated with PM2.5 to establish in vitro and in vivo exposure models. The models were treated with or without FC. The expression of inflammatory cytokines and tight junction proteins were studied. Proteomic analysis was performed to elucidate mechanisms. Mouse feces were collected for gut microbiota analysis. FC was shown to modulate the upregulation of pro-inflammatory cytokines mRNA expression in A549 and THP-1 cells and downregulated tight junction proteins mRNA expression in A549 cells due to PM2.5 stimulation. In animal models, the decreased expression of the anti-inflammatory factor il-10, tight junction protein ZO-1, and the elevated expression of COX-2 induced by PM2.5 were improved by FC intervention, which may be associated with zo-1 and cox-2 signaling pathways. In addition, FC was shown to improve the gut microbiota by increasing the abundance of beneficial bacteria.
Collapse
|
6
|
Ju Z, Shen L, Zhou M, Luo J, Yu Z, Qu C, Lei R, Lei M, Huang R. Helicobacter pylori and Alzheimer's Disease-Related Metabolic Dysfunction: Activation of TLR4/Myd88 Inflammation Pathway from p53 Perspective and a Case Study of Low-Dose Radiation Intervention. ACS Chem Neurosci 2022; 13:1065-1081. [PMID: 35312296 DOI: 10.1021/acschemneuro.2c00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gut dysbiosis is observed in Alzheimer's disease (AD) and is frequently associated with AD-induced metabolic dysfunction. However, the extent and specific underlying molecular mechanisms triggered by alterations of gut microbiota composition and function mediating AD-induced metabolic dysfunction in AD remain incompletely uncovered. Here, we indicate that Helicobacter pylori (H. pylori) is abundant in AD patients with relative metabolic dysfunction. Fecal microbiota transplantation from the AD patients promoted metabolic dysfunction in mice and increased gut permeability. H. pylori increased gut permeability through activation of the TLR4/Myd88 inflammation pathway in a p53-dependent manner, leading to metabolic dysfunction. Moreover, p53 deficiency reduced bile acid concentration, leading to an increased abundance of H. pylori colonization. Overall, these data identify H. pylori as a key promoter of AD-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Zijian Yu
- The First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan 421001, People’s Republic of China
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Mingjun Lei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
7
|
Sui L, Yan K, Zhang H, Nie J, Yang X, Xu CL, Liang X. Mogroside V Alleviates Oocyte Meiotic Defects and Quality Deterioration in Benzo(a)pyrene-Exposed Mice. Front Pharmacol 2021; 12:722779. [PMID: 34512349 PMCID: PMC8428525 DOI: 10.3389/fphar.2021.722779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Accumulating evidence has demonstrated that benzo(a)pyrene (BaP) exposure adversely affects female reproduction, especially oocyte meiotic maturation and subsequent embryo development. Although we previously found that mogroside V (MV), a major bioactive component of S. grosvenorii, can protect oocytes from quality deterioration caused by certain stresses, whether MV can alleviate BaP exposure-mediated oocyte meiotic defects remains unknown. In this study, female mice were exposed to BaP and treated concomitantly with MV by gavage. We found that BaP exposure reduced the oocyte maturation rate and blastocyst formation rate, which was associated with increased abnormalities in spindle formation and chromosome alignment, reduced acetylated tubulin levels, damaged actin polymerization and reduced Juno levels, indicating that BaP exposure results in oocyte nucleic and cytoplasmic damage. Interestingly, MV treatment significantly alleviated all the BaP exposure-mediated defects mentioned above, indicating that MV can protect oocytes from BaP exposure-mediated nucleic and cytoplasmic damage. Additionally, BaP exposure increased intracellular ROS levels, meanwhile induced DNA damage and early apoptosis in oocytes, but MV treatment ameliorated these defective parameters, therefore it is possible that MV restored BaP-mediated oocyte defects by reducing oxidative stress. In summary, our findings demonstrate that MV might alleviate oocyte meiotic defects and quality deterioration in BaP-exposed mice.
Collapse
Affiliation(s)
- Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huiting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chang-Long Xu
- Reproductive Medical Center Nanning Second People's Hospital, Nanning, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|