1
|
Shi B, Li YR, Xu J, Zou J, Zhou Z, Jia Q, Jiang HB, Liu K. Advances in amelioration of plasma electrolytic oxidation coatings on biodegradable magnesium and alloys. Heliyon 2024; 10:e24348. [PMID: 38434039 PMCID: PMC10906185 DOI: 10.1016/j.heliyon.2024.e24348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 03/05/2024] Open
Abstract
Magnesium and its alloys are considered excellent materials for biodegradable implants because of their good biocompatibility and biodegradability as well as their mechanical properties. However, the rapid degradation rate severely limits their clinical applications. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), is an effective surface modification technique. However, there are many pores and cracks on the coating surface under conventional PEO process. The corrosive products tend to penetrate deeply into the substrate, reducing its corrosion resistance and the biocompatibility, which makes PEO-coated Mg difficult to meet the long-term needs of in vivo implants. Hence, it is necessary to modify the PEO coating. This review discusses the formation mechanism and the influential parameters of PEO coatings on Mg. This is followed by a review of the latest research of the pretreatment and typical amelioration of PEO coating on biodegradable Mg alloys in the past 5 years, including calcium phosphate (Ca-P) coating, layered double hydroxide (LDH)-PEO coating, ZrO2 incorporated-PEO coating, antibacterial ingredients-PEO coating, drug-PEO coating, polymer-PEO composite coating, Plasma electrolytic fluorination (PEF) coating and self-healing coating. Meanwhile, the improvements of morphology, corrosion resistance, wear resistance, biocompatibility, antibacterial abilities, and drug loading abilities and the preparation methods of the modified PEO coatings are deeply discussed as well. Finally, the challenges and prospects of PEO coatings are discussed in detail for the purpose of promoting the clinical application of biodegradable Mg alloys.
Collapse
Affiliation(s)
- Biying Shi
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Yu Ru Li
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Jiaqi Xu
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Jiawei Zou
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Zili Zhou
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Kai Liu
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| |
Collapse
|
2
|
Al-Shalawi FD, Mohamed Ariff AH, Jung DW, Mohd Ariffin MKA, Seng Kim CL, Brabazon D, Al-Osaimi MO. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers (Basel) 2023; 15:2601. [PMID: 37376247 PMCID: PMC10303232 DOI: 10.3390/polym15122601] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Patients suffering bone fractures in different parts of the body require implants that will enable similar function to that of the natural bone that they are replacing. Joint diseases (rheumatoid arthritis and osteoarthritis) also require surgical intervention with implants such as hip and knee joint replacement. Biomaterial implants are utilized to fix fractures or replace parts of the body. For the majority of these implant cases, either metal or polymer biomaterials are chosen in order to have a similar functional capacity to the original bone material. The biomaterials that are employed most often for implants of bone fracture are metals such as stainless steel and titanium, and polymers such as polyethene and polyetheretherketone (PEEK). This review compared metallic and synthetic polymer implant biomaterials that can be employed to secure load-bearing bone fractures due to their ability to withstand the mechanical stresses and strains of the body, with a focus on their classification, properties, and application.
Collapse
Affiliation(s)
- Faisal Dakhelallah Al-Shalawi
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Azmah Hanim Mohamed Ariff
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
- Research Center Advanced Engineering Materials and Composites (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Dong-Won Jung
- Faculty of Applied Energy System, Major of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| | - Mohd Khairol Anuar Mohd Ariffin
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Collin Looi Seng Kim
- Department of Orthopaedic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Dermot Brabazon
- Advanced Manufacturing Research Centre, and Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, D09 V209 Dublin 9, Ireland;
| | - Maha Obaid Al-Osaimi
- Department of Microbiology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
3
|
Gambaro S, Nascimento ML, Shekargoftar M, Ravanbakhsh S, Sales V, Paternoster C, Bartosch M, Witte F, Mantovani D. Characterization of a Magnesium Fluoride Conversion Coating on Mg-2Y-1Mn-1Zn Screws for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8245. [PMID: 36431729 PMCID: PMC9692750 DOI: 10.3390/ma15228245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
MgF2-coated screws made of a Mg-2Y-1Mn-1Zn alloy, called NOVAMag® fixation screws (biotrics bioimplants AG), were tested in vitro for potential applications as biodegradable implants, and showed a controlled corrosion rate compared to non-coated screws. While previous studies regarding coated Mg-alloys have been carried out on flat sample surfaces, the present work focused on functional materials and final biomedical products. The substrates under study had a complex 3D geometry and a nearly cylindrical-shaped shaft. The corrosion rate of the samples was investigated using an electrochemical setup, especially adjusted to evaluate these types of samples, and thus, helped to improve an already patented coating process. A MgF2/MgO coating in the µm-range was characterized for the first time using complementary techniques. The coated screws revealed a smoother surface than the non-coated ones. Although the cross-section analysis revealed some fissures in the coating structure, the electrochemical studies using Hanks' salt solution demonstrated the effective role of MgF2 in retarding the alloy degradation during the initial stages of corrosion up to 24 h. The values of polarization resistance (Rp) of the coated samples extrapolated from the Nyquist plots were significantly higher than those of the non-coated samples, and impedance increased significantly over time. After 1200 s exposure, the Rp values were 1323 ± 144 Ω.cm2 for the coated samples and 1036 ± 198 Ω.cm2 for the non-coated samples, thus confirming a significant decrease in the degradation rate due to the MgF2 layer. The corrosion rates varied from 0.49 mm/y, at the beginning of the experiment, to 0.26 mm/y after 1200 s, and decreased further to 0.01 mm/y after 24 h. These results demonstrated the effectiveness of the applied MgF2 film in slowing down the corrosion of the bulk material, allowing the magnesium-alloy screws to be competitive as dental and orthopedic solutions for the biodegradable implants market.
Collapse
Affiliation(s)
- Sofia Gambaro
- National Research Council, Institute of Condensed Matter Chemistry and Technologies for Energy, CNR-ICMATE, 16149 Genoa, Italy
| | - M. Lucia Nascimento
- Biotrics Bioimplants AG, Ullsteinstrasse 108, 12109 Berlin, Germany
- Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Universitätsmedizin Berlin, Aßmannshauser Straße 4–6, 14197 Berlin, Germany
| | - Masoud Shekargoftar
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering and University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Samira Ravanbakhsh
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering and University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Vinicius Sales
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering and University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Carlo Paternoster
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering and University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Marco Bartosch
- Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Universitätsmedizin Berlin, Aßmannshauser Straße 4–6, 14197 Berlin, Germany
| | - Frank Witte
- Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Universitätsmedizin Berlin, Aßmannshauser Straße 4–6, 14197 Berlin, Germany
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering and University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Lu X, Cai H, Li YR, Zheng X, Yun J, Li W, Geng X, Kwon JS, Jiang HB. A Systematic Review and Network Meta-Analysis of Biomedical Mg Alloy and Surface Coatings in Orthopedic Application. Bioinorg Chem Appl 2022; 2022:4529520. [PMID: 35399618 PMCID: PMC8991394 DOI: 10.1155/2022/4529520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/19/2022] [Indexed: 12/15/2022] Open
Abstract
Magnesium alloys have great application prospects as ideal bone implant materials. However, their poor corrosion resistance limits their clinical orthopedic application. Surface modification promotes the corrosion resistance of magnesium. Conversion coatings, such as calcium phosphate (Ca-P) coating, microarc oxidation (MAO) treatment, and fluoride (FLU) treatment, have been extensively investigated in in vivo studies. This systematic review and network meta-analysis compared the influence of different conversion coatings on bone repair, material properties, and systemic host response in orthopedic applications. Using the PICOS model, the inclusion criteria for biodegradable magnesium and its alloys were determined for in vivo studies. Four databases were used. The standard and weight mean differences with 95% confidence intervals were used to analyze new bone formation and degradation rate. Network structure and forest plots were created, and ranking probabilities were estimated. The risk of bias and quality of evidence were assessed using SYRCLE, CERQual, and GRADE tools. In the qualitative analysis, 43 studies were selected, and the evaluation of each outcome indicator was not entirely consistent from article to article. In the quantitative analysis, 21 articles were subjected to network meta-analysis, with 16 articles on implant degradation and 8 articles for new bone formation. Additionally, SUCRA indicated that Ca-P coating exhibited the highest corrosion resistance, followed by FLU treatment. MAO demonstrated the best capability for new bone formation, followed by Ca-P coating. Ca-P coating exhibited the highest overall performance. To conclude, coated Mg can promote better new bone formation than bare Mg and has considerable biocompatibility. Ca-P-coated Mg and MAO-coated Mg have the greatest potential to significantly promote corrosion resistance and bone regeneration, respectively. The findings of this study will provide a theoretical basis for the investigation of composite coatings and guidance for the orthopedic application of Mg bone implants.
Collapse
Affiliation(s)
- XinYue Lu
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Yu Ru Li
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Xinru Zheng
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Jiahao Yun
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Wenhui Li
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - XiaoYu Geng
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Heng Bo Jiang
- The Conversationalist Club, School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China
| |
Collapse
|
5
|
Fluoride Coatings on Magnesium Alloy Implants. Bioinorg Chem Appl 2022; 2022:7636482. [PMID: 35295762 PMCID: PMC8920665 DOI: 10.1155/2022/7636482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022] Open
Abstract
After several years of research and development, it has been reported that magnesium alloys can be used as degradable metals in some medical device applications. Over the years, fluoride coatings have received increasing research attention for improving the corrosion resistance of magnesium. In this paper, different methods for preparing fluoride coatings and the characteristics of these coatings are reported for the first time. The influence of the preparation conditions of fluoride coatings, including the magnesium substrate, voltage, and electrolyte, on the coatings is discussed. Various properties of magnesium fluoride coatings are also summarized, with an emphasis on corrosion resistance, mechanical properties, and biocompatibility. We screened experiments and papers that planned the application of magnesium fluoride coatings in living organisms. We have selected the literature with the aim of enhancing the performance of in vivo implants for reading and further detailed classification. The authors searched PubMed, SCOPUS, Web of Science, and other databases for 688 relevant papers published between 2005 and 2021, citing 105 of them. The selected time range is the last 16 years. Furthermore, this paper systematically discusses future prospects and challenges related to the application of magnesium fluoride coatings to medical products.
Collapse
|
6
|
Joshi A, Dias G, Staiger MP. In silico modelling of the corrosion of biodegradable magnesium-based biomaterials: modelling approaches, validation and future perspectives. BIOMATERIALS TRANSLATIONAL 2021; 2:257-271. [PMID: 35836648 PMCID: PMC9255808 DOI: 10.12336/biomatertransl.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022]
Abstract
Metallic biomedical implants based on magnesium, zinc and iron alloys have emerged as bioresorbable alternatives to permanent orthopaedic implants over the last two decades. The corrosion rate of biodegradable metals plays a critical role in controlling the compatibility and functionality of the device in vivo. The broader adoption of biodegradable metals in orthopaedic applications depends on developing in vitro methods that accurately predict the biodegradation behaviour in vivo. However, the physiological environment is a highly complex corrosion environment to replicate in the laboratory, making the in vitro-to-in vivo translation of results very challenging. Accordingly, the results from in vitro corrosion tests fail to provide a complete schema of the biodegradation behaviour of the metal in vivo. In silico approach based on computer simulations aim to bridge the observed differences between experiments performed in vitro and vivo. A critical review of the state-of-the-art of computational modelling techniques for predicting the corrosion behaviour of magnesium alloy as a biodegradable metal is presented.
Collapse
Affiliation(s)
- Aditya Joshi
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - George Dias
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Mark P. Staiger
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand,Corresponding author: Mark P. Staiger,
| |
Collapse
|
7
|
Bai J, Xu Y, Fan Q, Cao R, Zhou X, Cheng Z, Dong Q, Xue F. Mechanical Properties and Degradation Behaviors of Zn-xMg Alloy Fine Wires for Biomedical Applications. SCANNING 2021; 2021:4831387. [PMID: 35024086 PMCID: PMC8720005 DOI: 10.1155/2021/4831387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 11/30/2021] [Indexed: 05/17/2023]
Abstract
Zn and Zn-based alloys exhibit biosafety and biodegradation, considered as candidates for biomedical implants. Zn-0.02 wt.% Mg (Zn-0.02 Mg), Zn-0.05 wt.% Mg (Zn-0.05 Mg), and Zn-0.2 wt.% Mg (Zn-0.2 Mg) wires (Φ 0.3 mm) were prepared for precision biomedical devices in this work. With the addition of Mg in Zn-xMg alloys, the grain size decreased along with the occurrence of Mg2Zn11 at the grain boundaries. Hot extrusion, cold drawing, and annealing treatment were introduced to further refining the grain size. Besides, the hot extrusion and cold drawing improved the tensile strength of Zn-xMg alloys to 240-270 MPa while elongation also increased but remained under 10%. Annealing treatment could improve the elongation of Zn alloys to 12% -28%, but decrease the tensile strength. Furthermore, Zn-xMg wires displayed an increase in degradation rate with Mg addition. The findings might provide a potential possibility of Zn-xMg alloy wires for biomedical applications.
Collapse
Affiliation(s)
- Jing Bai
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| | - Yan Xu
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Qizhou Fan
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Ruihua Cao
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Xingxing Zhou
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Zhaojun Cheng
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| | - Qiangsheng Dong
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| | - Feng Xue
- Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| |
Collapse
|