Derayea SM, Badr El-Din KM, Ahmed AS, Khorshed AA, Oraby M. Development of a green synchronous spectrofluorimetric technique for simultaneous determination of Montelukast sodium and Bilastine in pharmaceutical formulations.
BMC Chem 2024;
18:18. [PMID:
38268023 PMCID:
PMC10809640 DOI:
10.1186/s13065-024-01116-3]
[Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
For the treatment of rhinitis and asthma, a combination of Montelukast sodium and Bilastine has just been approved. Based on the first derivative of synchronous fluorescence, the current work developed a green, highly accurate, sensitive, and selective spectroscopic approach for estimating Montelukast sodium and Bilastine in pharmaceutical dosage form without previous separation. The selected technique focuses on measuring the synchronized fluorescence of the studied medications at a fixed wavelength range (Δλ) = 110 nm, and using the amplitude of the first derivative's peak at 381 and 324 nm, for quantitative estimation of Montelukast sodium and Bilastine, respectively. The impacts of different factors on the referred drugs' synchronized fluorescence intensity were investigated and adjusted. The calibration plots for were found to be linear over concentration ranges of 50-2000 ng mL-1 for Montelukast sodium and 50-1000 ng mL-1 for Bilastine. Montelukast sodium and Bilastine have LODs of 16.5 and 10.9 ng mL-1, respectively. In addition, LOQs were: 49.9 and 33.0 ng mL-1, for both drugs, respectively. The developed method was successfully employed to quantify the two drugs in synthetic tablets mixture and in laboratory prepared mixtures containing varied Montelukast and Bilastine ratios. To compare the results with the published analytical approach, a variance ratio F-test and a student t-test were used, which revealed no significant differences.
Collapse