1
|
Whitworth IT, Romero S, Kissi-Twum A, Knoener R, Scalf M, Sherer NM, Smith LM. Identification of Host Proteins Involved in Hepatitis B Virus Genome Packaging. J Proteome Res 2024; 23:4128-4138. [PMID: 39078123 PMCID: PMC11693245 DOI: 10.1021/acs.jproteome.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A critical part of the hepatitis B virus (HBV) life cycle is the packaging of the pregenomic RNA (pgRNA) into nucleocapsids. While this process is known to involve several viral elements, much less is known about the identities and roles of host proteins in this process. To better understand the role of host proteins, we isolated pgRNA and characterized its protein interactome in cells expressing either packaging-competent or packaging-incompetent HBV genomes. We identified over 250 host proteins preferentially associated with pgRNA from the packaging-competent version of the virus. These included proteins already known to support capsid formation, enhance viral gene expression, catalyze nucleocapsid dephosphorylation, and bind to the viral genome, demonstrating the ability of the approach to effectively reveal functionally significant host-virus interactors. Three of these host proteins, AURKA, YTHDF2, and ATR, were selected for follow-up analysis. RNA immunoprecipitation qPCR (RIP-qPCR) confirmed pgRNA-protein association in cells, and siRNA knockdown of the proteins showed decreased encapsidation efficiency. This study provides a template for the use of comparative RNA-protein interactome analysis in conjunction with virus engineering to reveal functionally significant host-virus interactions.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Abena Kissi-Twum
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Rachel Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| |
Collapse
|
2
|
Chen X, Lv X, Han M, Hu Y, Zheng W, Xue H, Li Z, Li K, Tan W. EMP1 as a Potential Biomarker in Liver Fibrosis: A Bioinformatics Analysis. Gastroenterol Res Pract 2023; 2023:2479192. [PMID: 37008256 PMCID: PMC10060069 DOI: 10.1155/2023/2479192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/16/2022] [Accepted: 09/05/2022] [Indexed: 04/04/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injury, which may result in cirrhosis and liver failure. Studies have been carried on the mechanisms and pathogenesis of liver fibrosis. However, the potential cell-specific expressed marker genes involved in fibrotic processes remain unknown. In this study, we combined a publicly accessible single-cell transcriptome of human liver with microarray datasets to evaluate the cell-specific expression patterns of differentially expressed genes in the liver. We noticed that EMP1 (epithelial membrane protein 1) is significantly active not only in CCl4 (carbon tetrachloride)-treated mouse liver fibrosis but also in BDL (bile duct ligation)-induced liver fibrosis and even in human fibrotic liver tissues such as alcoholic hepatitis, NASH (nonalcoholic steatohepatitis), and advanced stage liver fibrosis. Furthermore, we demonstrated that EMP1 is a specific fibrotic gene expressed in HSCs (hepatic stellate cells) and endothelial cells using the Protein Atlas single-cell transcriptome RNA-sequencing clustering. Its expression was significantly elevated in fibrotic HSCs or CCl4 and NASH-induced fibroblasts. Previous research revealed that EMP1 plays a role in proliferation, migration, metastasis, and tumorigeneses in different cancers via a variety of mechanisms. Because HSC activation and proliferation are two important steps following liver injury, it would be interesting to investigate the role of EMP1 in these processes. All of this information suggested that EMP1 could be used as a novel fibrotic liver marker and a possible target in the future.
Collapse
Affiliation(s)
- Xuchen Chen
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Xinliang Lv
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University Lishui, Zhejiang, China
| | - Manman Han
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Yexiao Hu
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Wanqiong Zheng
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Haibo Xue
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Zhuokai Li
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University Lishui, Zhejiang, China
| | - Kui Li
- Department of Blood Transfusion, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College Lishui, Zhejiang, China
| | - Wei Tan
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University Lishui, Zhejiang, China
| |
Collapse
|
3
|
Discovering Biomarkers for Non-Alcoholic Steatohepatitis Patients with and without Hepatocellular Carcinoma Using Fecal Metaproteomics. Int J Mol Sci 2022; 23:ijms23168841. [PMID: 36012106 PMCID: PMC9408600 DOI: 10.3390/ijms23168841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
High-calorie diets lead to hepatic steatosis and to the development of non-alcoholic fatty liver disease (NAFLD), which can evolve over many years into the inflammatory form of non-alcoholic steatohepatitis (NASH), posing a risk for the development of hepatocellular carcinoma (HCC). Due to diet and liver alteration, the axis between liver and gut is disturbed, resulting in gut microbiome alterations. Consequently, detecting these gut microbiome alterations represents a promising strategy for early NASH and HCC detection. We analyzed medical parameters and the fecal metaproteome of 19 healthy controls, 32 NASH patients, and 29 HCC patients, targeting the discovery of diagnostic biomarkers. Here, NASH and HCC resulted in increased inflammation status and shifts within the composition of the gut microbiome. An increased abundance of kielin/chordin, E3 ubiquitin ligase, and nucleophosmin 1 represented valuable fecal biomarkers, indicating disease-related changes in the liver. Although a single biomarker failed to separate NASH and HCC, machine learning-based classification algorithms provided an 86% accuracy in distinguishing between controls, NASH, and HCC. Fecal metaproteomics enables early detection of NASH and HCC by providing single biomarkers and machine learning-based metaprotein panels.
Collapse
|