1
|
Zhao X, Yang Y, Wang Y, Chen X, Yao Y, Yuan T, Li J, Li Y, Song X. Roles of noncoding RNA in allergic rhinitis. Int Forum Allergy Rhinol 2024; 14:1757-1775. [PMID: 39367803 DOI: 10.1002/alr.23461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) is one of the most common respiratory noninfectious diseases and chronic inflammatory diseases, the incidence of which has been increasing in recent years. The main pathological characteristics of AR are repeated inflammation, airway hyperreactivity, mucus hypersecretion, and reversible airway obstruction due to inflammatory cell response. AR occurrence is associated with various factors, including those of genetic and environmental origins. Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot be converted into polypeptides. The three main categories of ncRNAs include microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). NcRNAs play a crucial role in controlling gene expression and contribute to the development of numerous human diseases. METHODS Articles are selected based on Pubmed's literature review and the author's personal knowledge. The largest and highest quality studies were included. The search selection is not standardized. Several recent studies have indicated the relationship of ncRNAs with the development of respiratory allergic diseases. NcRNAs, including miRNAs, lncRNAs, and circRNAs, are important gene expression regulatory factors. We review the expression and function of ncRNAs in AR, their role as disease biomarkers, and their prospective applicability in future research and clinically. We also discuss interactions between ncRNAs and their influence on AR comprehensively, these interactions are essential for determining the underlying pathological mechanisms further and discovering new drug therapeutic targets. RESULTS NcRNAs can be used as biomarkers for early AR diagnosis, disease surveillance and prognosis assessment. Various categories of ncRNAs play distinct yet interconnected roles and actively contribute to intricate gene regulatory networks. They are also therapeutic targets and biomarkers in other allergic diseases. CONCLUSION This article demonstrates ncRNAs have a wide range of applications in AR treatment. The database covers three key areas: miRNAs, lncRNAs, and circRNAs. Additionally, potential avenues for future research to facilitate the practical application of ncRNAs as therapeutic targets and biomarkers will be explore. With further research and technological development, ncRNAs may provide additional innovative, effective solutions for AR treatment.
Collapse
Affiliation(s)
- Xiangkun Zhao
- Department of Clinical Medicine, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yuteng Yang
- Department of Clinical Medicine, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yaqi Wang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xi Chen
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yisong Yao
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Ting Yuan
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Jiaxuan Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yumei Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Clinical Medicine, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
2
|
Li S, Cui H, Lu H, Zheng S, Yuan C. Advances in noncoding RNA in children allergic rhinitis. Int Forum Allergy Rhinol 2024; 14:1350-1362. [PMID: 38946149 DOI: 10.1002/alr.23393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND A chronic condition that significantly reduces a child's quality of life is allergic rhinitis (AR). The environment and allergens that the body is regularly exposed to can cause inflammatory and immunological reactions, which can change the expression of certain genes Epigenetic changes are closely linked to the onset and severity of allergy disorders according to mounting amounts of data. Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot be converted into polypeptides. The three main categories of ncRNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). NcRNAs play a crucial role in controlling gene expression and contribute to the development of numerous human diseases. METHODS Articles are selected based on Pubmed's literature review and the author's personal knowledge. The largest and highest quality studies were included. The search selection is not standardized. RESULTS Recent findings indicate that various categories of ncRNAs play distinct yet interconnected roles and actively contribute to intricate gene regulatory networks. CONCLUSION This article demonstrates the significance and progress of ncRNAs in children's AR. The database covers three key areas: miRNAs, lncRNAs, and circRNAs. Additionally, potential avenues for future research to facilitate the practical application of ncRNAs as therapeutic targets and biomarkers will be explore.
Collapse
Affiliation(s)
- Shuman Li
- Chongqing Medical University, Chongqing, China
| | - Hongtao Cui
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Huina Lu
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shan Zheng
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chao Yuan
- Department of Pediatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
3
|
Liu J, Jiang X, Liu K, Deng J, Qiu Y, Wei W, Yang C. Role of LINC00240 on T-helper 9 differentiation in allergic rhinitis through influencing DNMT1-dependent methylation of PU.1. Immunol Res 2024; 72:197-211. [PMID: 37966708 DOI: 10.1007/s12026-023-09435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a common allergic disease with increasing prevalence globally. However, the molecular mechanism underlying AR pathogenesis remains largely undefined. METHODS Peripheral blood and nasal mucosa samples obtained from patients with AR (n = 22), and ovalbumin-induced AR mouse model (n = 8 per group) were prepared for subsequent detection. qRT-PCR and western blot were used to detect the expression of LINC00240, miR-155-5p, PU.1 and other key molecules. ELISA assay and flow cytometry were employed to evaluate the secretion of IL-9 and T-helper 9 (Th9) cell ratio, respectively. Bioinformatics analysis, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and luciferase reporter assays were employed to further elucidate the regulatory network of LINC00240/miR-155-5p/DNMT1. The methylation of PU.1 promoter was assessed by methylation-specific PCR (MSP). This signaling axis was further validated in the mouse model of AR. RESULTS LINC00240 was downregulated, while miR-155-5p and PU.1 were upregulated in the peripheral blood and nasal mucosa of AR patients, as well as in AR mice. This was accompanied with the increased ratio of Th9 cells and elevated IL-9 secretion. Mechanistically, LINC00240 served as a miR-155-5p sponge, and DNMT1 was a target of miR-155-5p. In addition, DNMT1 mediated the methylation of PU.1 promoter. In vivo studies verified that LINC00240 mitigated AR progression, possibly via miR-155-5p/DNMT1/PU.1-dependent Th9 differentiation. CONCLUSION The involvement of LINC00240 in AR pathogenesis is closely associated with Th9 differentiation through modulating DNMT1-dependent methylation of PU.1 by sponging miR-155-5p.
Collapse
Affiliation(s)
- JianGuo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - XunShuo Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Ke Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - JianJian Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Yi Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Wan Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China
| | - ChunPing Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, P.R. China.
| |
Collapse
|
4
|
Bovari-Biri J, Garai K, Banfai K, Csongei V, Pongracz JE. miRNAs as Predictors of Barrier Integrity. BIOSENSORS 2023; 13:bios13040422. [PMID: 37185497 PMCID: PMC10136429 DOI: 10.3390/bios13040422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The human body has several barriers that protect its integrity and shield it from mechanical, chemical, and microbial harm. The various barriers include the skin, intestinal and respiratory epithelia, blood-brain barrier (BBB), and immune system. In the present review, the focus is on the physical barriers that are formed by cell layers. The barrier function is influenced by the molecular microenvironment of the cells forming the barriers. The integrity of the barrier cell layers is maintained by the intricate balance of protein expression that is partly regulated by microRNAs (miRNAs) both in the intracellular space and the extracellular microenvironment. The detection of changes in miRNA patterns has become a major focus of diagnostic, prognostic, and disease progression, as well as therapy-response, markers using a great variety of detection systems in recent years. In the present review, we highlight the importance of liquid biopsies in assessing barrier integrity and challenges in differential miRNA detection.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Veronika Csongei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| |
Collapse
|
5
|
Langwiński W, Szczepankiewicz D, Narożna B, Stegmayr J, Wagner D, Alsafadi H, Lindstedt S, Stachowiak Z, Nowakowska J, Skrzypski M, Szczepankiewicz A. Allergic inflammation in lungs and nasal epithelium of rat model is regulated by tissue-specific miRNA expression. Mol Immunol 2022; 147:115-125. [DOI: 10.1016/j.molimm.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|