1
|
Nadri P, Zahmatkesh A, Bakhtari A. The potential effect of melatonin on in vitro oocyte maturation and embryo development in animals. Biol Reprod 2024; 111:529-542. [PMID: 38753882 DOI: 10.1093/biolre/ioae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation (IVM), embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccines Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azizollah Bakhtari
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
2
|
Chen Y, Shan X, Jiang H, Guo Z. Exogenous Melatonin Directly and Indirectly Influences Sheep Oocytes. Front Vet Sci 2022; 9:903195. [PMID: 35720845 PMCID: PMC9203153 DOI: 10.3389/fvets.2022.903195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding whether and how melatonin (MT) may impact sheep oocyte development competence is central to our ability to predict how sheep oocytes will respond to artificially regulated estrus. Implanting MT can make sheep enter estrus during the non-breeding season. One study found that the blastocyst rate increased under MT treatment, while another found that the blastocyst rate decreased. Therefore, we conducted a meta-analysis of MT directly and indirectly influencing sheep oocytes. A total of 433 articles were collected from which 20 articles and 34 treatments were finally selected. A method for estimating the default value was established for the litter size analysis. We found that exogenous MT add into in vitro maturation medium was positively related to the blastocyst rate in the lab. However, subcutaneous implanting MT did not affect the in vivo ovulation rate, fertilization rate, blastocyst rate, or pregnancy rate at farm. MT did not affect the in vitro cleavage rate. However, MT improved the in vivo cleavage rate. We hypothesized that implanted MT could increase the concentration of MT in oviduct fluid in vivo, and also that in vitro MT could increase the early cleavage rate of sheep zygotes without affecting the total cleavage rate. In the analysis of oocyte apoptosis caused by injury, the results suggested that pyroptosis would be more suitable for further research. MT produces responses in all body organs, and thus implanting of MT during non-breeding seasons should consider the effect on animal welfare.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xuesong Shan
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huaizhi Jiang
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhenhua Guo
- Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Harbin, China
| |
Collapse
|
3
|
Xu W, Hou L, Li P, Li L. Effect of nicotinamide N-methyltransferase on lipid accumulation in 3T3-L1 adipocytes. Bioengineered 2022; 13:12421-12434. [PMID: 35603729 PMCID: PMC9276046 DOI: 10.1080/21655979.2022.2074768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) is a methylase, and its expression is positively correlated with obesity and insulin resistance. This study aims to detect the effects of NNMT on lipid accumulation, triglyceride content, adipocyte differentiation-related transcription factors, genes related to lipid metabolism, adipokine expression, and autophagy in adipocytes. Lentivirus vectors and eukaryotic expression plasmids were used to interfere with NNMT expression. The Oil Red O method was used to detect lipid accumulation, and colorimetry was used to detect triglyceride levels. The transcription of adipocyte differentiation-related transcription factors (PPARγ, C/EBPα, and SREBP1), lipid metabolism-related genes (FABP4, FAS, FATP1 [SLC27A1], and LPL), adipokines (ADIPOQ and LEP) and autophagy-related genes (Beclin1, ATG7, ATG12, and ATG14) was detected by quantitative real-time polymerase chain reaction (RT-qPCR), and the protein expressions of PPARγ, ADIPOQ, LC3I, LC3II, Beclin1, and P62 were detected by western blot analysis. Compared with the control group, the knockdown of NNMT expression reduced lipid accumulation and triglyceride content in 3T3-L1 cells. The transcription of PPARγ, C/EBPα, SREBP1, FABP4, FASN, FATP1, LPL, Beclin1, ATG7, ATG12, and ATG14 decreased, while ADIPOQ and LEP transcription increased. The expression of PPARγ, LC3I/II, and Beclin1 proteins also decreased, while ADIPOQ and P62 protein expression increased. The over-expression NNMT group showed experimental results opposite to those described above. Interference with the expression of NNMT affects lipid accumulation, triglyceride content after cell differentiation, adipocyte differentiation-related transcription factors, genes related to lipid metabolism, the expression of adipokines, and autophagy in adipocytes.
Collapse
Affiliation(s)
- Wanfeng Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Guo Z, Yang J, Yang G, Feng T, Zhang X, Chen Y, Feng R, Qian Y. Effects of nicotinamide on follicular development and the quality of oocytes. Reprod Biol Endocrinol 2022; 20:70. [PMID: 35448997 PMCID: PMC9022236 DOI: 10.1186/s12958-022-00938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nicotinamide (NAM) is an important antioxidant, which is closely related to female fertility, but its role has not been clearly elucidated. The purpose of the present study was to investigate the effects of NAM on follicular development at different stages and the quality of oocytes. METHODS The concentration of NAM in follicular fluid (FF) of 236 women undergoing in vitro fertilization (IVF) was ascertained by enzyme-linked immunosorbent assay (ELISA), and the correlation between NAM and clinical indexes was analyzed. During the in vitro maturation (IVM) of mice cumulus-oocyte complexes (COCs), different concentrations of NAM were added to check the maturation rate and fertilization rate. The reactive oxygen species (ROS) levels in the oocytes treated with different hydrogen peroxide (H2O2) and NAM were assessed. Immunofluorescence staining was performed to measure the proportion of abnormal spindles. RESULTS The level of NAM in large follicles was significantly higher than that in small follicles. In mature FF, the NAM concentration was positively correlated with the rates of oocyte maturation and fertilization. Five mM NAM treatment during IVM increased maturation rate and fertilization rate in the oxidative stress model, and significantly reduced the increase of ROS levels induced by H2O2 in mice oocytes. CONCLUSIONS Higher levels of NAM in FF are associated with larger follicle development. The supplement of 5 mM NAM during IVM may improve mice oocyte quality, reducing damage caused by oxidative stress.
Collapse
Affiliation(s)
- Ziyu Guo
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jihong Yang
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Guangping Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Feng
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyue Zhang
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yao Chen
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Yun Qian
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
5
|
Liu A, Guo M, He L, Martínez MA, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. Nicotinamide N-methyltransferase protects against deoxynivalenol-induced growth inhibition by suppressing pro-inflammatory cytokine expression. Food Chem Toxicol 2022; 163:112969. [PMID: 35351591 DOI: 10.1016/j.fct.2022.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) is an inevitable contaminant in cereals for infants. Indeed, children's growth retardation caused by widespread DON pollution has become a global problem that cannot be ignored. Accumulating evidence has shown that DON stunts growth in children through pro-inflammatory cytokines. An exogenous increase of methylnicotinamide, a metabolite produced by nicotinamide N-methyltransferase (NNMT), has anti-inflammatory effects, but it is not clear whether NNMT has the same effect, and the role of NNMT in DON-induced inflammation and growth impairment remains indistinct. The present research reports that NNMT is an inflammatory self-protective factor in DON-exposed L02 cells. DON promoted the production of pro-inflammatory cytokines. Furthermore, DON increased NNMT to reduce pro-inflammatory cytokines, including interleukin (IL)-1β, IL-11 and IL-6, and thus increased IGF-1 and cell viability, alleviating the cell growth inhibition induced by DON. Interestingly, NNMT negatively regulated the expression of IL-1β through Sirtuin type 1 (SIRT1). Collectively, these findings provide new mechanistic insights into the toxicity of DON-induced growth retardation and inflammatory responses in children.
Collapse
Affiliation(s)
- Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingyue Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lixuan He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| |
Collapse
|
6
|
Hao Y, Wang J, Ren J, Liu Z, Bai Z, Liu G, Dai Y. Effect of dimethyl alpha-ketoglutarate supplementation on the in vitro developmental competences of ovine oocytes. Theriogenology 2022; 184:171-184. [DOI: 10.1016/j.theriogenology.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|