1
|
Qian X, Jiang Y, Yang Y, Zhang Y, Xu N, Xu B, Pei K, Yu Z, Wu W. Recent advances of miR-23 in human diseases and growth development. Noncoding RNA Res 2025; 11:220-233. [PMID: 39896346 PMCID: PMC11787465 DOI: 10.1016/j.ncrna.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025] Open
Abstract
MicroRNA (miRNA) is broadly manifested in eukaryotes and serves as a critical function in biological development and disease occurrence. With the rapid advancement of experimental research tools, researchers have discovered functional correlations among different miRNA isoforms and clusters within the same miRNA family. As a highly conserved member in the miR-23-27-24 cluster, miR-23 exhibits different isoforms and participates in various essential development. Although the miR-23-27-24 cluster has overlapping target sites, their differential expression can demonstrate independent biological functions. Furthermore, the untapped effects of miR-23 on organisms, whether as a functional cluster or a single regulator, has not been systematically elucidated yet. In this review article, we analyze the genomic location of miR-23 and its sequence variances among its isoforms or family members while summarizing its regulatory functions in metabolic diseases, immune responses, cardiovascular diseases, cancer, organ development as well as nervous system function. This review highlights the significant role of miR-23 as a biomarker for disease diagnosis and a key regulatory factor in pathogenesis, which can help us comprehend the diverse functions of miRNAs and provide a theoretical reference for the functional differences among miRNA isoforms.
Collapse
Affiliation(s)
- Xu Qian
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yadi Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yukun Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Na Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Pei
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
2
|
Feng Y, Zhang Z, Yang H, Miao F, Li Y, Zhang M, Cao Y, Li M. The lncRNA TPTEP1 suppresses PI3K/AKT signalling and inhibits ovarian cancer progression by interacting with PTBP1. J Cell Mol Med 2024; 28:e70106. [PMID: 39422584 PMCID: PMC11488117 DOI: 10.1111/jcmm.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/15/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The expression of the long noncoding RNA (lncRNA) TPTE pseudogene 1 (TPTEP1) is significantly downregulated in ovarian cancer (OC). However, the function and mechanism of the lncRNA TPTEP1 in OC have not been identified. To investigate the expression of the lncRNA TPTEP1, we analysed a publicly available dataset and 20 pairs of OC and normal ovarian samples tissue from the First Affiliated Hospital of Anhui Medical University. Functional assays were used to determine the role of the lncRNA TPTEP1 in OC progression. Furthermore, Western blot, FISH, RNA pull-down, mass spectrometry and RNA immunoprecipitation approaches were used to determine the mechanism by which the lncRNA TPTEP1 affects OC progression. Animal experiments were used to determine the role of the lncRNA TPTEP1 in ovarian tumorigenicity in vivo. The expression of the lncRNA TPTEP1 in OC tissues was significantly lower than that in normal tissues and low expression of the lncRNA TPTEP1 was significantly correlated with advanced FIGO stage and the presence of malignant ascites in OC patients. In vitro and in vivo, regulation of the expression of the lncRNA TPTEP1 caused changes in OC cell proliferation, migration, invasion and apoptosis. Mechanistically, we found that TPTEP1 directly binds to the polypyrimidine tract-binding protein 1 (PTBP1) protein and inhibits PI3K/AKT signalling. The lncRNA TPTEP1 inhibits PI3K/AKT signalling by directly binding PTBP1, possibly indicating the molecular mechanism underlying its biological function. With further research, these findings may aid in the development of clinically useful strategies for the treatment of OC.
Collapse
Affiliation(s)
- Yifan Feng
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| | - Zhe Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| | - Huijun Yang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Reproductive Health and GeneticsHefeiAnhuiChina
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial OrgansHefeiAnhuiChina
| | - Fulu Miao
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Reproductive Health and GeneticsHefeiAnhuiChina
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial OrgansHefeiAnhuiChina
| | - Yuyang Li
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Reproductive Health and GeneticsHefeiAnhuiChina
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial OrgansHefeiAnhuiChina
| | - Minmin Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| | - Yunxia Cao
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| | - Min Li
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhuiChina
- Key Laboratory of Population Health Across Life CycleAnhui Medical UniversityMinistry of Education of the People's Republic of ChinaHefeiAnhuiChina
| |
Collapse
|
3
|
Zhang M, Su C, Liu X, Hu S, Yan X. Identification of key molecules in the formation of portal vein tumor thrombus in hepatocellular carcinoma based on single cell transcriptomics and in vitro experiments. Transl Cancer Res 2024; 13:1737-1761. [PMID: 38737676 PMCID: PMC11082669 DOI: 10.21037/tcr-23-1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/19/2024] [Indexed: 05/14/2024]
Abstract
Background The presence of portal vein tumor thrombus (PVTT) is a significant indicator of advanced-stage hepatocellular carcinoma (HCC). Unfortunately, the prediction of PVTT occurrence remains challenging, and there is a lack of comprehensive research exploring the underlying mechanisms of PVTT formation and its association with immune infiltration. Methods Our approach involved analyzing single-cell sequencing data, applying high dimensional weighted gene co-expression network analysis (hdWGCNA), and identifying key genes associated with PVTT development. Furthermore, we constructed competing endogenous RNA (ceRNA) networks and employed weighted gene co-expression network analysis (WGCNA), as well as three machine-learning techniques, to identify the upstream regulatory microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) of the crucial mRNAs. We employed fuzzy clustering of time series gene expression data (Mfuzz), gene set variation analysis (GSVA), and cell communication analysis to uncover significant signaling pathways involved in the activation of these important mRNAs during PVTT development. In addition, we conducted immune infiltration analysis, survival typing, and drug sensitivity analysis using The Cancer Genome Atlas (TCGA) cohort to gain insights into the two patient groups under study. Results Through the implementation of hdWGCNA, we identified 110 genes that was closely associated with PVTT. Among these genes, TMEM165 emerged as a crucial candidate, and we further investigated its significance using COX regression analysis. Furthermore, through machine learning techniques and survival analysis, we successfully identified the upstream regulatory miRNA (hsa-miR-148a) and lncRNA (LINC00909) that targeted TMEM165. These findings shed light on the complex regulatory network surrounding TMEM165 in the context of PVTT. Moreover, we conducted CIBERSORT analysis, which unveiled correlations between TMEM165 and immune infiltration in HCC patients. Specifically, TMEM165 exhibited associations with various immune cell populations, including memory B cells and CD8+ T cells. Additionally, we observed implications for immune function, particularly in relation to immune checkpoints, within the context of HCC. Conclusions The regulatory axis involving TMEM165, hsa-miR-148a, and LINC00909 emerges as a crucial determinant in the development of PVTT in HCC patients, and it holds significant implications for prognosis. Furthermore, alterations in the TMEM165/hsa-miR-148a/LINC00909 regulatory axis exhibit a strong correlation with immune infiltration within the HCC tumor microenvironment, leading to immune dysfunction and potential failure of immunotherapy.
Collapse
Affiliation(s)
- Man Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenglei Su
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Liu
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuqun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Xianliang Yan
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Emergency Medicine, Suining People’s Hospital, Xuzhou, China
| |
Collapse
|
4
|
Xu H, Xiong W, Liu X, Wang Y, Shi M, Shi Y, Shui J, Yu Y. Long noncoding RNA LINC00921 serves as a predictive biomarker for lung adenocarcinoma: An observational study. Medicine (Baltimore) 2024; 103:e37179. [PMID: 38363898 PMCID: PMC10869092 DOI: 10.1097/md.0000000000037179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is usually diagnosed at advanced stages. Hence, there is an urgent need to seek an effective biomarker to predict LUAD status. Long noncoding RNAs (lncRNAs) play key roles in the development of tumors. However, the relationship between LINC00921 and LUAD remains unclear. The gene expression data of LUAD were downloaded from the Cancer Genome Atlas database to investigate the expression level of LINC00921 in LUAD. Diagnostic ability analysis, survival analysis, tumor mutational burden analysis, and immune cell infiltration analysis of LINC00921 in LUAD patients were performed simultaneously. According to the median expression value of LINC00921, patients were divided into LINC00921 high- and low-expression groups. The function of LINC00921 in LUAD was identified through difference analysis and enrichment analysis. Moreover, drugs that may be relevant to LUAD treatment were screened. Finally, blood samples were collected for real-time polymerase chain reaction. LINC00921 was significantly lower in LUAD tumor tissues. Notably, patients with low expression of LINC00921 had a shorter median survival time. Decreased immune cell infiltration in the tumor microenvironment in the low LINC00921 expression group may contribute to poorer patient outcomes. Tumor mutational burden was significantly different in survival between the LINC00921 high- and low-expression groups. In addition, LINC00921 may exert an influence on cancer development through its regulation of target genes transcription. Glyceraldehyde-3-phosphate dehydrogenase-related drugs may be more likely to be therapeutically effective in LUAD. LINC00921 was able to be used as the potential diagnostic indicator for LUAD.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Weijie Xiong
- Cancer Prevention and Treatment Institute of Chengdu, Department of Oncology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 610031, P.R. China
| | - Xianguo Liu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wang
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Maolin Shi
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yuhui Shi
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Jia Shui
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yanxin Yu
- Department of Oncology, 363 Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Lv J, Zhang Y, Yang M, Qiao L, Wang H, Jiang H, Fu M, Qin J, Xu S. Hsa_circ_0013561 promotes epithelial-mesenchymal transition and tumor progression by regulating ANXA2 via miR-23b-3p in ovarian cancer. Cancer Gene Ther 2024; 31:108-118. [PMID: 38102461 PMCID: PMC10794140 DOI: 10.1038/s41417-023-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Our preliminary experiment discovered that hsa_circ_0013561 was aberrantly expressed in OC. However, the underlying mechanism is unclear. The expression of hsa_circ_0013561 in OC cells and tissues was detected by RT-qPCR and fluorescence in situ hybridization. The effects of hsa_circ_0013561 on the proliferation and metastasis of OC were explored by functional experiments such as cell counting kit-8, transwell, and tumor xenograft models. To mechanistically understand the regulatory role of hsa_circ_0013561, bioinformatics analysis, Western blot, luciferase reporter assay, and a series of rescue experiments were applied. We found that the hsa_circ_0013561 expression was elevated in OC cells and tissues, and was correlated with metastasis formation. Downregulation of hsa_circ_0013561 suppressed the proliferation and migration of OC cells both in vitro and in vivo. Regarding the interactions of hsa_circ_0013561, the luciferase reporter assay verified that miR-23b-3p and Annexin A2 (ANXA2) were its downstream targets. MiR-23b-3p inhibition or ANXA2 overexpression reversed OC cell proliferation, migration, and epithelial-mesenchymal transition (EMT) post-hsa_circ_0013561 silencing. Moreover, ANXA2 overexpression also reversed OC cell migration, proliferation, and EMT after miR-23b-3p upregulation. Our data suggest that hsa_circ_0013561 increases the expression of ANXA2 by regulating miR-23b-3p competitively, resulting in EMT and metastasis of OC. Thus, hsa_circ_0013561 may serve as a novel oncogenic biomarker for OC progression.
Collapse
Affiliation(s)
- Jia Lv
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijun Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengying Yang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lianqiao Qiao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huici Jiang
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingxu Fu
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinlong Qin
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Zheng P, Zhang W, Wang J, Gong Q, Xu N, Chen N. Bioinformatics and functional experiments reveal that MRC2 inhibits atrial fibrillation via the PPAR signaling pathway. J Thorac Dis 2023; 15:5625-5639. [PMID: 37969297 PMCID: PMC10636429 DOI: 10.21037/jtd-23-1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 11/17/2023]
Abstract
Background Atrial fibrillation (AF) is a prevalent cardiac arrhythmia that requires improved clinical markers to increase diagnostic accuracy and provide insight into its pathogenesis. Although some biomarkers are available, new ones need to be discovered to better capture the complex physiology of AF. However, their limitations are still not fully addressed. Bioinformatics and functional studies can help find new clinical markers and improve the understanding of AF, meeting the need for early diagnosis and individualized treatment. Methods To identify AF-related differentially expressed genes (DEGs), We applied the messenger RNA (mRNA) expression profile retrieved in Series Matrix File format from the GSE143924 microarray dataset obtained from the Gene Expression Omnibus (GEO) database, and then used weighted gene co-expression network analysis (WGCNA) to identify the overlapping genes. These genes were analyzed by enrichment analysis, expression analysis and others to obtain the hub gene. Additionally, the potential signaling pathway of hub gene in AF was explored and verified by functional experiments, like quantitative real-time polymerase chain reaction (qRT-PCR), cell counting kit-8 (CCK-8), flow cytometry, and Western blotting (WB) assay. Results From the GSE143924 data (410 DEGs) and tan module (57 genes), 10 overlapping genes were identified. A central down-regulated gene in AF, MRC2, was identified through bioinformatics analysis. based on these results, it was hypothesized that the PPAR signaling pathway is related to the mechanism of action of MRC2 in AF. Moreover, over-MRC2 markedly reduced the growth speed of angiotensin II (Ang II)-induced human cardiac fibroblasts (HCFs) and increased apoptosis. Conversely, knockdown of MRC2 promoted HCFs cell proliferation number. Additionally, MRC2 over-expression increased the protein expression level of PPARα, PPARγ, CPT-1, and SIRT3 in Ang II-induced HCFs. Conclusions While meeting the need for new biomarkers in the diagnosis and prognosis of AF, this study reveals the inherent limitations of current biomarkers. We identified MRC2 as a key player as an inhibitory gene in AF, highlighting its role in suppressing AF progression through the PPAR signaling pathway. MRC2 may not only serve as a diagnostic indicator, but also as a promising therapeutic target for patients with AF, which is expected to be applied in clinical practice and open up new avenues for individualized interventions.
Collapse
Affiliation(s)
- Pengxiang Zheng
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Zhang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiahong Wang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qunlin Gong
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Xu
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nannan Chen
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Xiong J, Lai Y, Cheng N, Liu J, Wang F, Zheng X, Wang Y, Zhuang Q, Lin Y, Liu J, Yang Y, Zhao B, Yang X. Lnc-PLA2G4A-4 facilitates the progression of hepatocellular carcinoma by inducing versican expression via sponging miR-23b-3p. Heliyon 2023; 9:e18698. [PMID: 37554815 PMCID: PMC10405012 DOI: 10.1016/j.heliyon.2023.e18698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) is associated with progression of multiple human cancers including hepatocellular carcinoma (HCC). However, the role of lncRNAs in HCC is not been fully understood. Our study aimed to investigate the biological function and potential molecular mechanism of Lnc-PAL2G4A-4 in HCC. In the current study, we show that Lnc-PLA2G4A-4 was significantly up-regulated in HCC tissues and high Lnc-PLA2G4A-4 expression was remarkably associated with tumor size, microvascular invasion and poor prognosis of HCC patients. Functionally, Lnc-PLA2G4A-4 positively regulated cell proliferation, invasion and migration in vitro, and facilitated lung metastasis of HCC in vivo. Mechanistically, Lnc-PLA2G4A-4 functioned as a competing endogenous RNA (ceRNA) to bind to miR-23b-3p and subsequently facilitate miR-23b-3p's target gene versican (VCAN) expression in HCC cells. Over-expression of miR-23b-3p could reverse Lnc-PLA2G4A-4 induced cell phenotypes in HCC and suppress versican expression of by rescue analysis. Collectively, Lnc-PLA2G4A-4 promotes HCC progression by targeting the miR-23b-3p/versican axis, which may be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jiahui Xiong
- Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350001, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Yongping Lai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou 350025, PR China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou 350025, PR China
| | - Jizhe Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou 350025, PR China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou 350025, PR China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou 350025, PR China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou 350025, PR China
| | - Yantin Lin
- Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350001, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| | - Jingfeng Liu
- Department of Hepatopancreatobiliary Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, PR China
| | - Yixuan Yang
- Fuzhou Gezhi High School of Fujian, Fuzhou, PR China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Fuzhou 350025, PR China
| | - Xiaoyu Yang
- Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350001, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, PR China
| |
Collapse
|
8
|
Huang K, Wu H, Xu X, Wu L, Li Q, Han L. Identification of TGF-β-related genes in cardiac hypertrophy and heart failure based on single cell RNA sequencing. Aging (Albany NY) 2023; 15:7187-7218. [PMID: 37498303 PMCID: PMC10415570 DOI: 10.18632/aging.204901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Heart failure (HF) remains a huge medical burden worldwide. Pathological cardiac hypertrophy is one of the most significant phenotypes of HF. Several studies have reported that the TGF-β pathway plays a double-sided role in HF. Therefore, TGF-β-related genes (TRGs) may be potential therapeutic targets for cardiac hypertrophy and HF. However, the roles of TRGs in HF at the single-cell level remain unclear. METHOD In this study, to analyze the expression pattern of TRGs during the progress of cardiac hypertrophy and HF, we used three public single-cell RNA sequencing datasets for HF (GSE161470, GSE145154, and GSE161153), one HF transcriptome data (GSE57338), and one hypertrophic cardiomyopathy transcriptome data (GSE141910). Weighted gene co-expression network analysis (WGCNA), functional enrichment analysis and machine learning algorithms were used to filter hub genes. Transverse aortic constriction mice model, CCK-8, wound healing assay, quantitative real-time PCR and western blotting were used to validate bioinformatics results. RESULTS We observed that cardiac fibroblasts (CFs) and endothelial cells showed high TGF-β activity during the progress of HF. Three modules (royalblue, brown4, and darkturquoize) were identified to be significantly associated with TRGs in HF. Six hub genes (TANC2, ADAMTS2, DYNLL1, MRC2, EGR1, and OTUD1) showed anomaly trend in cardiac hypertrophy. We further validated the regulation of the TGF-β-MYC-ADAMTS2 axis on CFs activation in vitro. CONCLUSIONS This study identified six hub genes (TANC2, ADAMTS2, DYNLL1, MRC2, EGR1, and OTUD1) by integrating scRNA and transcriptome data. These six hub genes might be therapeutic targets for cardiac hypertrophy and HF.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hao Wu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiangyang Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lujia Wu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qin Li
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lin Han
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
10
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G, Gazouli M. The Role of EMT-Related lncRNAs in Ovarian Cancer. Int J Mol Sci 2023; 24:10079. [PMID: 37373222 DOI: 10.3390/ijms241210079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers worldwide; late diagnosis and drug resistance are two major factors often responsible for high morbidity and treatment failure. Epithelial-to-mesenchymal transition (EMT) is a dynamic process that has been closely linked with cancer. Long non-coding RNAs (lncRNAs) have been also associated with several cancer-related mechanisms, including EMT. We conducted a literature search in the PubMed database in order to sum up and discuss the role of lncRNAs in regulating OC-related EMT and their underlying mechanisms. Seventy (70) original research articles were identified, as of 23 April 2023. Our review concluded that the dysregulation of lncRNAs is highly associated with EMT-mediated OC progression. A comprehensive understanding of lncRNAs' mechanisms in OC will help in identifying novel and sensitive biomarkers and therapeutic targets for this malignancy.
Collapse
Affiliation(s)
| | - Marios Papadimitriou
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- National Organization for Medicines (EOF), 15562 Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Fan YH, He ZY, Zheng WX, Hu LT, Wang BY. Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage. Neural Regen Res 2023; 18:560-567. [DOI: 10.4103/1673-5374.346551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Long Noncoding RNA LINC00909 Induces Epithelial-Mesenchymal Transition and Contributes to Osteosarcoma Tumorigenesis and Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:8660965. [PMID: 36262353 PMCID: PMC9576421 DOI: 10.1155/2022/8660965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Background Osteosarcoma (OS) is a malignant tumor that is highly metastatic with a high mortality rate. Although mounting evidence suggests that LINC00909 is strongly associated with the malignant progression of various tumors, the exact role of LINC00909 in OS remains unknown. Therefore, the current study was designed to investigate the relationship between LINC00909 and the malignant progression of OS. Methods LINC00909 expression was measured in OS cell lines and clinical specimens using RT-qPCR assays. The effects of LINC00909 on OS proliferation, invasion, and migration were calculated both in vitro and in vivo. Apart from that, bioinformatics analyses, FISH, RIP, and luciferase reporter assays were carried out to investigate the downstream target of LINC00909. Rescue experiments were also conducted to investigate the potential mechanisms of action of competitive endogenous RNAs (ceRNAs). Results In this study, we found that LINC00909 was highly expressed in OS cell lines and clinical specimens. In vivo and in vitro experiments demonstrated that LINC00909 induces epithelial-to-mesenchymal transition (EMT) and contributes to OS tumorigenesis and metastasis. FISH, RIP, and luciferase assays indicated that miR-875-5p is a direct target of LINC00909. Moreover, HOXD9 was validated as the downstream target of miR-875-5p in a luciferase reporter assay and western blotting experiments. Rescue experiments revealed that HOXD9 reversed the effect of LV-sh-LINC00909 on OS cells by positively regulating the PI3K/AKT/mTOR signaling pathway. Conclusion Collectively, LINC00909 induces EMT and contributes to OS tumorigenesis and metastasis through the PI3K/AKT/mTOR pathway by binding to miR-875-5p to upregulate HOXD9 expression. Targeting the LINC00909/miR-875-5p/HOXD9 axis may have potential in treating OS.
Collapse
|
13
|
Ru L, Wang XM, Niu JQ. The miR-23-27-24 cluster: an emerging target in NAFLD pathogenesis. Acta Pharmacol Sin 2022; 43:1167-1179. [PMID: 34893685 PMCID: PMC9061717 DOI: 10.1038/s41401-021-00819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing globally, being the most widespread form of chronic liver disease in the west. NAFLD includes a variety of disease states, the mildest being non-alcoholic fatty liver that gradually progresses to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Small non-coding single-stranded microRNAs (miRNAs) regulate gene expression at the miRNA or translational level. Numerous miRNAs have been shown to promote NAFLD pathogenesis and progression through increasing lipid accumulation, oxidative stress, mitochondrial damage, and inflammation. The miR-23-27-24 clusters, composed of miR-23a-27a-24-2 and miR-23b-27b-24-1, have been implicated in various biological processes as well as many diseases. Herein, we review the current knowledge on miR-27, miR-24, and miR-23 in NAFLD pathogenesis and discuss their potential significance in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Ru
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiao-mei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| | - Jun-qi Niu
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
14
|
Hou CX, Sun NN, Han W, Meng Y, Wang CX, Zhu QH, Tang YT, Ye JH. Exosomal microRNA-23b-3p promotes tumor angiogenesis and metastasis by targeting PTEN in Salivary adenoid cystic carcinoma. Carcinogenesis 2022; 43:682-692. [PMID: 35380635 DOI: 10.1093/carcin/bgac033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA(miR)-23b-3p is known to target various genes that are involved in cancer-related pathways. Exosomes are emerging intercellular communication agents. Exosomes secreted by cancer cells can deliver active molecules to the surrounding stromal cells, thereby influencing the recipient cells and promoting the development of cancers. However, the role of exosomal miR-23b-3p in salivary adenoid cystic carcinoma (SACC) is not yet clear. In this study, we set out to investigate the potential role of cancer-derived exosomal miR-23b-3p-related PTEN in the alteration of angiogenesis and vascular permeability in SACC. We investigated the effect of exosomal miR-23b-3p on the progression of SACC. In vitro experiments indicated that exosomal miR-23b-3p led to an up-regulation of vascular permeability, and reduced expression of tight junction proteins. In addition, exosomal miR-23b-3p also enhanced angiogenesis and migration. Next, the angiogenic effect of exosomal miR-23b-3p was validated in vivo, as it led to an increase in the tumor microvasculature. Furthermore, the growth rate of SACC was faster after injection of exosomes loaded with cholesterol- modified miR-23b-3p in mice. In conclusion, these results revealed that SACC cells-derived exosomes play an important role in promoting angiogenesis and local vascular microleakage of SACC by transporting miR-23b-3p, which suggests that miR-23b-3p in the exosomes may be a potential biomarker for distant metastasis of SACC. This suggests the potential of a novel therapeutic target by delivering anti-miR-23b-3p that focuses on exosomes.
Collapse
Affiliation(s)
- Chen-Xing Hou
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Nan-Nan Sun
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Han
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Meng
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xing Wang
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Hai Zhu
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Ye
- Jiangsu Key Laboratory of Oral Disease, & Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Liu Q. The emerging roles of exosomal long non-coding RNAs in bladder cancer. J Cell Mol Med 2022; 26:966-976. [PMID: 34981655 PMCID: PMC8831985 DOI: 10.1111/jcmm.17152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, have been reported to play essential roles as extracellular messengers by transporting goods in various diseases, while their potential roles in bladder cancer (BC) still remain to be further studied. BC exhibits a high degree of chemoresistance and metastatic ability, which may be affected by cancer‐derived exosomes that carry proteins, lipids and RNA. To date, the most studied exosomal molecular cargo is long non‐coding RNA (lncRNA). Although there is increasing interest in its role and function, there is relatively little knowledge about it compared with other RNA transcripts. Nevertheless, in the past ten years, we have witnessed increasing interest in the role and function of lncRNA. For example, lncRNAs have been studied as potential biomarkers for the diagnosis of BC. They may play a role as a therapeutic target in precision medicine, but they may also be directly involved in the characteristics of tumour progression, such as metastasis, epithelial‐mesenchymal transition and drug resistance. Cancer cells are on chemotherapy acting. The function of lncRNA in various cancer exosomes has not yet been determined. In this review, we summarize the current studies about the prominent roles of exosomal lncRNAs in genome integrity, BC progression and carcinogenic features.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Lu Y, Mao J, Xu Y, Pan H, Wang Y, Li W. Ropivacaine represses the ovarian cancer cell stemness and facilitates cell ferroptosis through inactivating the PI3K/AKT signaling pathway. Hum Exp Toxicol 2022; 41:9603271221120652. [PMID: 36124980 DOI: 10.1177/09603271221120652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Ovarian cancer is a malignant tumor in women all over the world. Ropivacaine is identified as a potential drug for the treatment of malignant tumors, but the role and mechanism of ropivacaine in ovarian cancer remains unknown. MATERIALS AND METHODS Ovarian cancer cells were treated with different doses of ropivacaine. The function of ropivacaine in ovarian cancer was assessed using Cell Counting Kit-8 assay, flow cytometry, sphere-formation assay, Western blot, Fe2+ level analysis, and immunofluorescence. Meanwhile, the mechanism of ropivacaine in ovarian cancer was investigated by multiple molecular experiments. The protective function of ropivacaine in ovarian cancer was further confirmed by in vivo assay. RESULTS The functional research data indicated that the growth and stemness of ovarian cancer cells were restrained after ropivacaine treatment, while the ferroptosis in ovarian cancer cells was facilitated. The mechanism results confirmed that ropivacaine inactivated the PI3K/AKT signaling pathway in ovarian cancer cells. Furthermore, in vivo assay demonstrated that ropivacaine repressed the proliferation of ovarian cancer cells in vivo and had a protective function in ovarian cancer. CONCLUSION Ropivacaine restrained ovarian cancer cell stemness and accelerated cell ferroptosis by inactivating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yi Lu
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinbao Mao
- Department Of Anesthesia and Surgery, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanbing Xu
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hao Pan
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu Wang
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Li
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
PCAT6 May Be a Whistler and Checkpoint Target for Precision Therapy in Human Cancers. Cancers (Basel) 2021; 13:cancers13236101. [PMID: 34885209 PMCID: PMC8656686 DOI: 10.3390/cancers13236101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Prostate cancer-associated transcript 6 (PCAT6), as a newly discovered carcinogenic long non-coding RNA (lncRNA), is abnormally expressed in multiple diseases. With the accumulation of studies on PCAT6, we have a deeper understanding of its biological functions and mechanisms. Therefore, in this review, the various molecular mechanisms by which PCAT6 promotes multiple tumorigenesis and progression are summarized and discussed. Furthermore, its potential diagnostic, prognostic, and immunotherapeutic values are also clarified. Abstract LncRNAs are involved in the occurrence and progressions of multiple cancers. Emerging evidence has shown that PCAT6, a newly discovered carcinogenic lncRNA, is abnormally elevated in various human malignant tumors. Until now, PCAT6 has been found to sponge various miRNAs to activate the signaling pathways, which further affects tumor cell proliferation, migration, invasion, cycle, apoptosis, radioresistance, and chemoresistance. Moreover, PCAT6 has been shown to exert biological functions beyond ceRNAs. In this review, we summarize the biological characteristics of PCAT6 in a variety of human malignancies and describe the biological mechanisms by which PCAT6 can facilitate tumor progression. Finally, we discuss its diagnostic and prognostic values and clinical applications in various human malignancies.
Collapse
|