Khosravi-Nezhad S, Hassanpour S, Hesaraki S. L-Theanine Improves Locomotor Function in a Model of Multiple Sclerosis Mice.
ARCHIVES OF RAZI INSTITUTE 2023;
78:195-203. [PMID:
37312698 PMCID:
PMC10258260 DOI:
10.22092/ari.2022.360066.2544]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/01/2022] [Indexed: 06/15/2023]
Abstract
This study designed to investigate the protective effects of L-theanine on experimental Multiple sclerosis in mice. Frothy Male C57BL/6 mice were allocated into 4 experimental groups: control no treatment received a regular chew pellet, and the cuprizone (CPZ) group received a standard chew pellet containing 0.2% (w/w) CPZ. In group 3, mice were fed a regular diet and administered p.o. with L-theanine (50mg/kg). In group 4, mice received a diet containing CPZ and were administered p.o. with L-theanine (50mg/kg). Finally, reflexive motor behavior and serum antioxidant levels were determined. Based on findings, CPZ significantly decreased ambulation score, hind-limb suspension, front limb suspension, and grip strength (P<0.05). The CPZ + L-theanine reduced the adverse effect of the CPZ on ambulation score, hind-limb foot angle, surface righting, and negative geotaxis (P<0.05). The CPZ + L-theanine increased front and hind-limb suspension, grip strength, number of the cross, and duration of a stay on the rotarod compared to the control animal (P<0.05). CPZ administration significantly elevated serum malondialdehyde (MDA) while superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant status (TAS) levels decreased compared to control mice (P<0.05). The CPZ + L-theanine leads to the cessation of MDA production while increasing SOD, GPx, and TAS levels (P<0.05). These results suggested L-theanine has a protective effect against CPZ-induced MS in mice.
Collapse