1
|
Qi Z, Zhu J, Cai W, Lou C, Li Z. The role and intervention of mitochondrial metabolism in osteoarthritis. Mol Cell Biochem 2024; 479:1513-1524. [PMID: 37486450 PMCID: PMC11224101 DOI: 10.1007/s11010-023-04818-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Osteoarthritis (OA), a prevalent degenerative joint disease, affects a substantial global population. Despite the elusive etiology of OA, recent investigations have implicated mitochondrial dysfunction as a significant factor in disease pathogenesis. Mitochondria, pivotal cellular organelles accountable for energy production, exert essential roles in cellular metabolism. Hence, mitochondrial dysfunction can exert broad-ranging effects on various cellular processes implicated in OA development. This comprehensive review aims to provide an overview of the metabolic alterations occurring in OA and elucidate the diverse mechanisms through which mitochondrial dysfunction can contribute to OA pathogenesis. These mechanisms encompass heightened oxidative stress and inflammation, perturbed chondrocyte metabolism, and compromised autophagy. Furthermore, this review will explore potential interventions targeting mitochondrial metabolism as means to impede or decelerate the progression of OA. In summary, this review offers a comprehensive understanding of the involvement of mitochondrial metabolism in OA and underscores prospective intervention strategies.
Collapse
Affiliation(s)
- Zhanhai Qi
- Department of Orthopedics, The 960th hospital of the Joint Logistics Support Force of the People's Liberation Army, Jinan, Shandong, China
| | - Jiaping Zhu
- Department of Orthopedics, Jinan City People's Hospital, Jinan, Shandong, China
| | - Wusheng Cai
- Department of Orthopedics, Heze Third People's Hospital, Heze, Shandong, China
| | - Chunbiao Lou
- Department of Orthopedics, Heze Third People's Hospital, Heze, Shandong, China
| | - Zongyu Li
- Department of Orthopedics, The 960th hospital of the Joint Logistics Support Force of the People's Liberation Army, Jinan, Shandong, China.
| |
Collapse
|
2
|
Liu L, Zhang B, Zhou Z, Yang J, Li A, Wu Y, Peng Z, Li X, Liu Z, Leng X, Zhao C, Dong H, Zhao W. Integrated Network Pharmacology and Experimental Validation Approach to Investigate the Mechanisms of Radix Rehmanniae Praeparata - Angelica Sinensis - Radix Achyranthis Bidentatae in Treating Knee Osteoarthritis. Drug Des Devel Ther 2024; 18:1583-1602. [PMID: 38765877 PMCID: PMC11102756 DOI: 10.2147/dddt.s455006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Background Knee osteoarthritis (KOA) is a persistent degenerative condition characterized by the deterioration of cartilage. The Chinese herbal formula Radix Rehmanniae Praeparata- Angelica Sinensis-Radix Achyranthis Bidentatae (RAR) has often been used in effective prescriptions for KOA as the main functional drug, but its underlying mechanism remains unclear. Therefore, network pharmacology and verification experiments were employed to investigate the impact and mode of action of RAR in the treatment of KOA. Methods The destabilization of the medial meniscus model (DMM) was utilized to assess the anti-KOA effect of RAR by using gait analysis, micro-computed tomography (Micro-CT), and histology. Primary chondrocytes were extracted from the rib cartilage of a newborn mouse. The protective effects of RAR on OA cells were evaluated using a CCK-8 assay. The antioxidative effect of RAR was determined by measuring reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione (GSH) production. Furthermore, network pharmacology and molecular docking were utilized to propose possible RAR targets for KOA, which were further verified through experiments. Results In vivo, RAR significantly ameliorated DMM-induced KOA characteristics, such as subchondral bone sclerosis, cartilage deterioration, gait abnormalities, and the degree of knee swelling. In vitro, RAR stimulated chondrocyte proliferation and the expression of Col2a1, Comp, and Acan. Moreover, RAR treatment significantly reduced ROS accumulation in an OA cell model induced by IL-1β and increased the activity of antioxidant enzymes (SOD and GSH). Network pharmacology analysis combined with molecular docking showed that Mapk1 might be a key therapeutic target. Subsequent research showed that RAR could downregulate Mapk1 mRNA levels in IL-1β-induced chondrocytes and DMM-induced rats. Conclusion RAR inhibited extracellular matrix (ECM) degradation and oxidative stress response via the MAPK signaling pathway in KOA, and Mapk1 may be a core target.
Collapse
Affiliation(s)
- Lang Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Binghua Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Zhenwei Zhou
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ailin Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yongji Wu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Zeyu Peng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Zhonghua Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Changwei Zhao
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenhai Zhao
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
3
|
Wang X, Liu Z, Deng S, Zhou J, Li X, Huang J, Chen J, Ji C, Deng Y, Hu Y. SIRT3 alleviates high glucose-induced chondrocyte injury through the promotion of autophagy and suppression of apoptosis in osteoarthritis progression. Int Immunopharmacol 2024; 130:111755. [PMID: 38408417 DOI: 10.1016/j.intimp.2024.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
A growing amount of epidemiological evidence proposes diabetes mellitus (DM) to be an independent risk factor for osteoarthritis (OA). Sirtuin 3 (SIRT3), which is mainly located in mitochondria, belongs to the family of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases and is involved in the physiological and pathological processes of cell regulation. The aim of this study was to investigate the effects of SIRT3 on diabetic OA and underlying mechanisms in the prevention of type 2 DM (T2DM)-induced articular cartilage damage. High-fat and high-sugar diets combined with streptozotocin (STZ) injection were used for establishing an experimental T2DM rat model. The destabilization of medial meniscus (DMM) surgery was applied to induce the rat OA model. Primary rat chondrocytes were cultivated with a concentration of gradient glucose. Treatment with intra-articular injection of SIRT3 overexpression lentivirus was achieved in vivo, and intervention with SIRT3 knockdown was performed using siRNA transfection in vitro. High glucose content was found to activate inflammatory response, facilitate apoptosis, downregulate autophagy, and exacerbate mitochondrial dysfunction in a dose-dependent manner in rat chondrocytes, which can be deteriorated by SIRT3 knockdown. In addition, articular cartilage damage was found to be more severe in T2DM-OA rats than in DMM-induced OA rats, which can be mitigated by the intra-articular injection of SIRT3 overexpression lentivirus. Targeting SIRT3 is a potential therapeutic strategy for the alleviation of diabetic OA.
Collapse
Affiliation(s)
- Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Zilin Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Shuang Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Jun Huang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Junwen Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Chuang Ji
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China
| | - Yu Deng
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
4
|
周 巧, 刘 健, 朱 艳, 汪 元, 王 桂, 齐 亚, 胡 月. [Identification of Osteoarthritis Inflamm-Aging Biomarkers by Integrating Bioinformatic Analysis and Machine Learning Strategies and the Clinical Validation]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:279-289. [PMID: 38645862 PMCID: PMC11026895 DOI: 10.12182/20240360106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 04/23/2024]
Abstract
Objective To identify inflamm-aging related biomarkers in osteoarthritis (OA). Methods Microarray gene profiles of young and aging OA patients were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) were obtained from the Human Aging Genome Resource (HAGR) database. The differentially expressed genes of young OA and older OA patients were screened and then intersected with ARGs to obtain the aging-related genes of OA. Enrichment analysis was performed to reveal the potential mechanisms of aging-related markers in OA. Three machine learning methods were used to identify core senescence markers of OA and the receiver operating characteristic (ROC) curve was used to assess their diagnostic performance. Peripheral blood mononuclear cells were collected from clinical OA patients to verify the expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Results A total of 45 senescence-related markers were obtained, which were mainly involved in the regulation of cellular senescence, the cell cycle, inflammatory response, etc. Through the screening with the three machine learning methods, 5 core senescence biomarkers, including FOXO3, MCL1, SIRT3, STAG1, and S100A13, were obtained. A total of 20 cases of normal controls and 40 cases of OA patients, including 20 cases in the young patient group and 20 in the elderly patient group, were enrolled. Compared with those of the young patient group, C-reactive protein (CRP), interleukin (IL)-6, and IL-1β levels increased and IL-4 levels decreased in the elderly OA patient group (P<0.01); FOXO3, MCL1, and SIRT3 mRNA expression decreased and STAG1 and S100A13 mRNA expression increased (P<0.01). Pearson correlation analysis demonstrated that the selected markers were associated with some indicators, including erythrocyte sedimentation rate (ESR), IL-1β, IL-4, CRP, and IL-6. The area under the ROC curve of the 5 core aging genes was always greater than 0.8 and the C-index of the calibration curve in the nomogram prediction model was 0.755, which suggested the good calibration ability of the model. Conclusion FOXO3, MCL1, SIRT3, STAG1, and S100A13 may serve as novel diagnostic biomolecular markers and potential therapeutic targets for OA inflamm-aging.
Collapse
Affiliation(s)
- 巧 周
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
- 安徽中医药大学第一临床医学院 (合肥 230012)First School of Clinical Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 健 刘
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 艳 朱
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 元 汪
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 桂珍 王
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 亚军 齐
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 月迪 胡
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| |
Collapse
|
5
|
Liu D, Zhou X, He Y, Zhao J. The Roles of CircRNAs in Mitochondria. J Cancer 2024; 15:2759-2769. [PMID: 38577612 PMCID: PMC10988319 DOI: 10.7150/jca.92111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
Mitochondria participate in varieties of cellular events. It is widely accepted that human mitochondrial genome encodes 13 proteins, 2 rRNAs, and 22 tRNAs. Gene variation derived from human nuclear genome cannot completely explain mitochondrial diseases. The advent of high-throughput sequencing coupled with novel bioinformatic analyses decode the complexity of mitochondria-derived transcripts. Recently, circular RNAs (circRNAs) from both human mitochondrial genome and nuclear genome have been found to be located at mitochondria. Studies about the roles and molecular mechanisms underlying trafficking of the nucleus encoded circRNAs to mitochondria and mitochondria encoded circRNAs to the nucleus or cytoplasm in mammals are only beginning to emerge. These circRNAs have been associated with a variety of diseases, especially cancers. Here, we discuss the emerging field of mitochondria-located circRNAs by reviewing their identification, expression patterns, regulatory roles, and functional mechanisms. Mitochondria-located circRNAs have regulatory roles in cellular physiology and pathology. We also highlight future perspectives and challenges in studying mitochondria-located circRNAs, as well as their potential biomedical applications.
Collapse
Affiliation(s)
- Donghong Liu
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Xinyu Zhou
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Yida He
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Jun Zhao
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| |
Collapse
|
6
|
Wang B, Zou F, Xin G, Xiang BL, Zhao JQ, Yuan SF, Zhang XL, Zhang ZH. Sodium tanshinone IIA sulphate inhibits angiogenesis in lung adenocarcinoma via mediation of miR-874/eEF-2K/TG2 axis. PHARMACEUTICAL BIOLOGY 2023; 61:868-877. [PMID: 37300283 DOI: 10.1080/13880209.2023.2204879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 03/12/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023]
Abstract
CONTEXT Sodium tanshinone IIA sulphate (STS) is a product originated from Salvia miltiorrhiza Bunge [Lamiaceae], which exerts an antitumour effect. However, the role of STS on lung adenocarcinoma (LUAD) remains unexplored. OBJECTIVE Our study explores the effect and mechanism of STS against LUAD. MATERIALS AND METHODS LUAD cells were treated with 100 μM STS for 24 h and control group cells were cultured under normal medium conditions. Functionally, the viability, migration, invasion and angiogenesis of LUAD cells were examined by MTT, wound healing, transwell and tube formation assay, respectively. Moreover, cells were transvected with different transfection plasmids. Dual luciferase reporter and RNA immunoprecipitation (RIP) assays were used to verify the relationship between miR-874 and eEF-2K. RESULTS STS significantly decreased the viability (40-50% reduction), migration (migration rate of A549 cells from 0.67 to 0.28, H1299 cells from 0.71 to 0.41), invasion (invasion numbers of A549 cells from 172 to 55, H1299 cells from 188 to 35) and angiogenesis (80-90% reduction) of LUAD cells. Downregulation of miR-874 partially abolished the antitumour effect of STS. EEF-2K was identified to be the target of miR-874, and its downregulation markedly abolished the effects of miR-874 downregulation on tumourigenesis of LUAD. Moreover, silencing of TG2 abrogated eEF-2K-induced progression of LUAD. DISCUSSION AND CONCLUSIONS STS attenuated the tumourigenesis of LUAD through the mediation of the miR-874/eEF-2K/TG2 axis. STS is a promising drug to fight against lung cancer, which might effectively reverse drug resistance when combined with classical anticancer drugs.
Collapse
Affiliation(s)
- Bu Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Fang Zou
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Gu Xin
- Department of Neurology Physician, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei Province, P.R. China
| | - Bao-Li Xiang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Jian-Qing Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Sheng-Fang Yuan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Xiu-Long Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| |
Collapse
|
7
|
Jin L, Ma J, Chen Z, Wang F, Li Z, Shang Z, Dong J. Osteoarthritis related epigenetic variations in miRNA expression and DNA methylation. BMC Med Genomics 2023; 16:163. [PMID: 37434153 PMCID: PMC10337191 DOI: 10.1186/s12920-023-01597-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
Osteoarthritis (OA) is chronic arthritis characterized by articular cartilage degradation. However, a comprehensive regulatory network for OA-related microRNAs and DNA methylation modifications has yet to be established. Thus, we aimed to identify epigenetic changes in microRNAs and DNA methylation and establish the regulatory network between miRNAs and DNA methylation. The mRNA, miRNA, and DNA methylation expression profiles of healthy or osteoarthritis articular cartilage samples were downloaded from Gene Expression Omnibus (GEO) database, including GSE169077, GSE175961, and GSE162484. The differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs), and differentially methylated genes (DMGs) were analyzed by the online tool GEO2R. DAVID and STRING databases were applied for functional enrichment analysis and protein-protein interaction (PPI) network. Potential therapeutic compounds for the treatment of OA were identified by Connectivity map (CMap) analysis. A total of 1424 up-regulated DEGs, 1558 down-regulated DEGs, 5 DEMs with high expression, 6 DEMs with low expression, 1436 hypermethylated genes, and 455 hypomethylated genes were selected. A total of 136 up-regulated and 65 downregulated genes were identified by overlapping DEGs and DEMs predicted target genes which were enriched in apoptosis and circadian rhythm. A total of 39 hypomethylated and 117 hypermethylated genes were obtained by overlapping DEGs and DMGs, which were associated with ECM receptor interactions and cellular metabolic processes, cell connectivity, and transcription. Moreover, The PPI network showed COL5A1, COL6A1, LAMA4, T3GAL6A, and TP53 were the most connective proteins. After overlapping of DEGs, DMGs and DEMs predicted targeted genes, 4 up-regulated genes and 11 down-regulated genes were enriched in the Axon guidance pathway. The top ten genes ranked by PPI network connectivity degree in the up-regulated and downregulated overlapping genes of DEGs and DMGs were further analyzed by the CMap database, and nine chemicals were predicted as potential drugs for the treatment of OA. In conclusion, TP53, COL5A1, COL6A1, LAMA4, and ST3GAL6 may play important roles in OA genesis and development.
Collapse
Affiliation(s)
- Lingpeng Jin
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Zhen Chen
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Fei Wang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Zhikuan Li
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Ziqi Shang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Jiangtao Dong
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China.
| |
Collapse
|
8
|
Li Z, Lu J. CircRNAs in osteoarthritis: research status and prospect. Front Genet 2023; 14:1173812. [PMID: 37229197 PMCID: PMC10203419 DOI: 10.3389/fgene.2023.1173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease globally, and its progression is irreversible. The mechanism of osteoarthritis is not fully understood. Research on the molecular biological mechanism of OA is deepening, among which epigenetics, especially noncoding RNA, is an emerging hotspot. CircRNA is a unique circular noncoding RNA not degraded by RNase R, so it is a possible clinical target and biomarker. Many studies have found that circRNAs play an essential role in the progression of OA, including extracellular matrix metabolism, autophagy, apoptosis, the proliferation of chondrocytes, inflammation, oxidative stress, cartilage development, and chondrogenic differentiation. Differential expression of circRNAs was also observed in the synovium and subchondral bone in the OA joint. In terms of mechanism, existing studies have mainly found that circRNA adsorbs miRNA through the ceRNA mechanism, and a few studies have found that circRNA can serve as a scaffold for protein reactions. In terms of clinical transformation, circRNAs are considered promising biomarkers, but no large cohort has tested their diagnostic value. Meanwhile, some studies have used circRNAs loaded in extracellular vesicles for OA precision medicine. However, there are still many problems to be solved in the research, such as the role of circRNA in different OA stages or OA subtypes, the construction of animal models of circRNA knockout, and more research on the mechanism of circRNA. In general, circRNAs have a regulatory role in OA and have particular clinical potential, but further studies are needed in the future.
Collapse
Affiliation(s)
- Zhuang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Wang H, Zhao J, Wang J. Role of circular RNAs in osteoarthritis: update on pathogenesis and therapeutics. Mol Genet Genomics 2023; 298:791-801. [PMID: 37086279 DOI: 10.1007/s00438-023-02021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Osteoarthritis (OA) is a common and crippling joint disease characterized by cartilage degeneration, subchondral bone sclerosis, and synovitis. The main clinical manifestations of OA are chronic joint pain and impaired mobility, which seriously affect patient's quality of life. Circular RNAs (circRNAs) are noncoding RNAs that are widely discovered in eukaryotic cells. Unlike standard linear RNAs, circRNAs form a covalently closed continuous loop structure without a 5' or 3' polarity. Various experiments in recent years have confirmed that numerous circRNAs appear to be differentially expressed in OA cartilage and synovium. And they are closely associated with various pathological progressions in OA, such as extracellular matrix degradation, chondrocyte apoptosis, and inflammation. In this review, we briefly described the biogenesis, characterization, and functions of circRNAs. And we focused on the relationships between circRNAs and OA progression. At last, we further discussed the prospects of clinical applications of circRNAs in OA, with the expectation to provide feasible directions for OA diagnosis and treatment.
Collapse
Affiliation(s)
- Hulin Wang
- Department of Orthopedics, Wuwei People's Hospital, Xuanwu Street, Liangzhou District, Wuwei, Gansu, 733000, People's Republic of China
| | - Junjie Zhao
- Department of Orthopedics, Wuwei People's Hospital, Xuanwu Street, Liangzhou District, Wuwei, Gansu, 733000, People's Republic of China
| | - Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Xuanwu Street, Liangzhou District, Wuwei, Gansu, 733000, People's Republic of China.
| |
Collapse
|
10
|
Ao X, Ding W, Li X, Xu Q, Chen X, Zhou X, Wang J, Liu Y. Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. J Mol Med (Berl) 2023; 101:501-526. [PMID: 37014377 DOI: 10.1007/s00109-023-02305-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of disease-related death worldwide and a significant obstacle to improving patients' health and lives. Mitochondria are core organelles for the maintenance of myocardial tissue homeostasis, and their impairment and dysfunction are considered major contributors to the pathogenesis of various CVDs, such as hypertension, myocardial infarction, and heart failure. However, the exact roles of mitochondrial dysfunction involved in CVD pathogenesis remain not fully understood. Non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, have been shown to be crucial regulators in the initiation and development of CVDs. They can participate in CVD progression by impacting mitochondria and regulating mitochondrial function-related genes and signaling pathways. Some ncRNAs also exhibit great potential as diagnostic and/or prognostic biomarkers as well as therapeutic targets for CVD patients. In this review, we mainly focus on the underlying mechanisms of ncRNAs involved in the regulation of mitochondrial functions and their role in CVD progression. We also highlight their clinical implications as biomarkers for diagnosis and prognosis in CVD treatment. The information reviewed herein could be extremely beneficial to the development of ncRNA-based therapeutic strategies for CVD patients.
Collapse
Affiliation(s)
- Xiang Ao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qingling Xu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xinhui Chen
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
11
|
Jia Z, Liu J, Wang J. circRNA-MSR regulates the expression of FBXO21 to inhibit chondrocyte autophagy by targeting miR-761 in osteoarthritis. Kaohsiung J Med Sci 2022; 38:1168-1177. [PMID: 36278814 DOI: 10.1002/kjm2.12604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and is the most prevalent and disabling form of arthritis worldwide. Autophagy plays a vital role in OA. This study aimed to explore whether covalently closed circular RNA MSR (circRNA-MSR) could affect the F-box Only Protein 21 (FBXO21) expression by targeting microRNA-761 (miR-761), thereby affecting the autophagy in OA chondrocytes. Clinical OA tissues were collected, and circRNA-MSR, miR-761, and FBXO21 expressions were detected via quantitative real-time polymerase chain reaction (qRT-PCR). An in vitro OA model was constructed by treating C28/I2 cells with LPS and treating them with overexpression or knockdown vector of circRNA-MSR, miR-761, and FBXO21, and autophagy inhibitor 3-MA. Fluorescence in situ hybridization (FISH) determined the location of circRNA-MSR and miR-761. Dual-luciferase assay assessed circRNA-MSR and miR-761, along with the bindings of miR-761 and FBXO21. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. LC3 II/I, p62 and beclin 1 expressions were detected via the western blot. circRNA-MSR and FBXO21 levels were elevated in OA, but miR-761 level was inhibited. Suppressing circRNA-MSR promoted the autophagy of LPS-treated cells. circRNA-MSR could bind to miR-761 and inhibit its expression. MiR-761 inhibition reversed the promoted autophagy caused by circRNA-MSR knockdown in LPS-treated C28/I2 cells. Moreover, miR-761 could target FBXO21 and inhibit its expression. FBXO21 overexpression reversed the increased autophagy caused by miR-761 overexpression in LPS-treated C28/I2 cells. circRNA-MSR could affect FBXO21 level via targeting miR-761, thereby repressing autophagy in OA chondrocytes, providing a new target and strategy for OA treatment.
Collapse
Affiliation(s)
- Zhen Jia
- Joint Surgery and Sport Medicine Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, People's Republic of China
| | - Jia Liu
- Joint Surgery and Sport Medicine Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, People's Republic of China
| | - Jing Wang
- Joint Surgery and Sport Medicine Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
12
|
The Effect of miR-505-5p on Inhibition of Serum Uromodulin Ameliorates Myocardial Inflammation and Apoptosis Induced by Ischemia-Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3521971. [PMID: 36225178 PMCID: PMC9550459 DOI: 10.1155/2022/3521971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Background It has been found that miR-505-5p is closely related to cardiovascular metabolic risk factors. Nonetheless, there is little research analyzing miR-505-5p for its role as well as molecular mechanism in myocardial injury caused by ischemia-reperfusion (I/R). Methods This work utilized quantitative reverse transcriptase PCR (qRT-PCR) for detecting miR-505-5p and serum uromodulin (sUmod) levels. sUmod, interleukin-1beta (IL-1β), IL-6, IL-10, caspase7, caspase9, tumor necrosis factor-alpha (TNF-α), Bax, and Bcl-xL expression was detected by western blot. Bioinformatics database was used for target prediction and miR-505-5's target was determined by luciferase reporter gene assay. Results Relative to sham group, sUmod was highly expressed within myocardial I/R injury (MIRI), whereas sUmod silencing significantly decreased the heart weight/body weight ratio, reduced serum myocardial enzymes expression, ameliorated I/R-mediated myocardial apoptosis, and inflammation. TargetScan bioinformatics database and luciferase reporter genes confirmed that sUmod was miR-505-5p's direct target gene, besides, miR-505-5p overexpression significantly improved the myocardial injury score, increased IL-10, decreased TNF-α, IL-1β, IL-6 expression, decreased caspase7, caspase9, Bax expression, and increased Bcl-xL expression. More importantly, overexpression of sUmod abolished miR-505-5p overexpression's role in I/R-mediated myocardial apoptosis and inflammation. Conclusion miR-505-5p can improve I/R-mediated myocardial apoptosis and inflammation by targeting sUmod. In this study, miR-505-5p is related to MIRI pathogenesis, which provides the new possible targeted therapy in patients with MIRI.
Collapse
|
13
|
Circular RNA MELK Promotes Chondrocyte Apoptosis and Inhibits Autophagy in Osteoarthritis by Regulating MYD88/NF-κB Signaling Axis through MicroRNA-497-5p. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7614497. [PMID: 35992546 PMCID: PMC9356867 DOI: 10.1155/2022/7614497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a rheumatic disease and its pathogenesis involves the dysregulation of noncoding RNAs. Therefore, the regulatory mechanism of circular RNA MELK (circMELK) was specified in this work. OA human cartilage tissue was collected, and circMELK, miR-497-5p, and myeloid differentiation factor 88 (MYD88) expression were examined. Human chondrocytes were stimulated with interleukin- (IL-) 1β and interfered with vectors altering circMELK, miR-497-5p, and MyD88 expression to observe their effects on cell viability, cell cycle and apoptosis, autophagy, and inflammation. The binding relationship between RNAs was verified. The data presented that OA cartilage tissues presented raised circMELK and MYD88 and inhibited miR-497-5p expression. IL-1β suppressed cell viability, prevented cell cycle, and induced apoptosis, autophagy, and inflammation of chondrocytes. Functionally, IL-1β-induced changes of chondrocytes could be attenuated by suppressing circMELK or overexpressing miR-497-5p. circMELK acted as a sponge of miR-497-5p while miR-497-5p was a regulator of MYD88. MYD88 restricted the effect of overexpressing miR-497-5p on IL-1β-stimulated chondrocytes. MYD88 triggered nuclear factor-kappaB (NF-κB) pathway activation. Shortly, CircMELK promotes chondrocyte apoptosis and inhibits autophagy in OA by regulating MYD88/NF-κB signaling axis through miR-497-5p. Our study proposes a new molecular mechanism for the development of OA.
Collapse
|
14
|
Lin C, Ge L, Tang L, He Y, Moqbel SAA, Xu K, Ma D, Zhou X, Ran J, Wu L. Nitidine Chloride Alleviates Inflammation and Cellular Senescence in Murine Osteoarthritis Through Scavenging ROS. Front Pharmacol 2022; 13:919940. [PMID: 35935815 PMCID: PMC9353946 DOI: 10.3389/fphar.2022.919940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic musculoskeletal disorder worldwide, representing a major source of disability, pain and socioeconomic burden. Yet the effective pharmaceutical treatments applied in the clinical works are merely symptomatic management with uncertainty around their long-term safety and efficacy, namely no drugs currently are capable of modulating the biological progression of OA. Here, we identified the potent anti-inflammatory as well as anti-oxidative properties of Nitidine Chloride (NitC), a bioactive phytochemical alkaloid extracted from natural herbs, in IL-1β-treated rat articular chondrocytes (RACs), LPS-stimulated RAW 264.7 and rat osteoarthritic models in vivo. We demonstrated NitC remarkably inhibited the production of inflammatory mediators including COX2 and iNOS, suppressed the activation of MAPK and NF-κB cell signaling pathway and reduced the expression of extracellular matrix (ECM) degrading enzymes including MMP3, MMP9 and MMP13 in IL-1β-treated RACs. Several emerging bioinformatics tools were performed to predict the underlying mechanism, the result of which indicated the potential reactive oxygen species (ROS) clearance potential of NitC. Further, NitC exhibited its anti-oxidative potential through ameliorating cellular senescence in IL-1β-treated RACs and decreasing NLRP3 inflammasomes activation in LPS-stimulated RAW 264.7 via scavenging ROS. Additionally, X-ray, micro-CT and other experiments in vivo demonstrated that intra-articular injection of NitC significantly alleviated the cartilage erosion, ECM degradation and subchondral alterations in OA progression. In conclusion, the present study reported the potent anti-inflammatory and anti-oxidative potential of NitC in OA biological process, providing a promising therapeutic agent for OA management.
Collapse
Affiliation(s)
- Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Lujie Ge
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Luping Tang
- Department of Emergency Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Safwat Adel Abdo Moqbel
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Diana Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Xing Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- *Correspondence: Jisheng Ran, ; Lidong Wu,
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- *Correspondence: Jisheng Ran, ; Lidong Wu,
| |
Collapse
|