1
|
Cai R, Chen X, Khan S, Li H, Tan J, Tian Y, Zhao S, Yin Z, Jin D, Guo J. Aspongopus chinensis Dallas induces pro-apoptotic and cell cycle arresting effects in hepatocellular carcinoma cells by modulating miRNA and mRNA expression. Heliyon 2024; 10:e27525. [PMID: 38500987 PMCID: PMC10945178 DOI: 10.1016/j.heliyon.2024.e27525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Aspongopus chinensis Dallas is a traditional Chinese medicinal insect with several anticancer properties can inhibit cancer cell growth, by inhibiting cell division, autophagy and cell cycle. However, the precise therapeutics effects and mechanisms of this insect on liver cancer are still unknown. This study examined the inhibitory influence of A. chinensis on the proliferation of hepatocellular carcinoma (HCC) cells and explore the underlying mechanism using high-throughput sequencing. The results showed that A. chinensis substantially reduced the viability of Hep G2 cells. A total of 33 miRNAs were found to be upregulated, while 43 miRNAs were downregulated. Additionally, 754 mRNAs were upregulated and 863 mRNAs were downregulated. Significant enrichment of differentially expressed genes was observed in signaling pathways related to tumor cell growth, cell cycle regulation, and apoptosis. Differentially expressed miRNAs exhibited a targeting relationship with various target genes, including ARC, HSPA6, C11orf86, and others. Hence, cell cycle and apoptosis were identified by flow cytometry. These findings indicate that A. chinensis impeded cell cycle advancement, halted the cell cycle in the G0/G1 and S stages, and stimulated apoptosis. Finally, mouse experiments confirmed that A. chinensis significantly inhibits tumor growth in vivo. Therefore, our findings indicate that A. chinensis has a notable suppressive impact on the proliferation of HCC cells. The potential mechanism of action could involve the regulation of mRNA expression via miRNA, ultimately leading to cell cycle arrest and apoptosis. The results offer a scientific foundation for the advancement and application of A. chinensis in the management of HCC.
Collapse
Affiliation(s)
- Renlian Cai
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xumei Chen
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Samiullah Khan
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Haiyin Li
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Ying Tian
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shuai Zhao
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zhiyong Yin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Daochao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jianjun Guo
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
2
|
Feng N, Yu H, Wang Y, Zhang Y, Xiao H, Gao W. Exercise training attenuates angiotensin II-induced cardiac fibrosis by reducing POU2F1 expression. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00104-1. [PMID: 36374849 PMCID: PMC10362488 DOI: 10.1016/j.jshs.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Exercise training protects against heart failure. However, the mechanism underlying the protective effect of exercise training on angiotensin II (Ang II)-induced cardiac fibrosis remains unclear. METHODS An exercise model involving C57BL/6N mice and 6 weeks of treadmill training was used. Ang II (1.44 mg/kg/day) was administered to induce cardiac fibrosis. RNA sequencing and bioinformatic analysis were used to identify the key factors mediating the effects of exercise training on cardiac fibrosis. Primary adult mouse cardiac fibroblasts (CFs) were used in vitro. Adeno-associated virus serotype 9 was used to overexpress POU domain, class 2, transcription factor 1 (POU2F1) in vivo. RESULTS Exercise training attenuated Ang II-induced cardiac fibrosis and reversed 39 gene expression changes. The transcription factor regulating the largest number of these genes was POU2F1. Compared to controls, POU2F1 was shown to be significantly upregulated by Ang II, which is itself reduced by exercise training. In vivo, POU2F1 overexpression nullified the benefits of exercise training on cardiac fibrosis. In CFs, POU2F1 promoted cardiac fibrosis. CCAAT enhancer-binding protein β (C/EBPβ) was predicted to be the transcription factor of POU2F1 and verified using a dual-luciferase reporter assay. In vivo, exercise training activated AMP-activated protein kinase (AMPK) and alleviated the increase in C/EBPβ induced by Ang II. In CFs, AMPK agonist inhibited the increase in C/EBPβ and POU2F1 induced by Ang II, whereas AMPK inhibitor reversed this effect. CONCLUSION Exercise training attenuates Ang II-induced cardiac fibrosis by reducing POU2F1. Exercise training inhibits POU2F1 by activating AMPK, which is followed by the downregulation of C/EBPβ, the transcription factor of POU2F1.
Collapse
Affiliation(s)
- Na Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yueshen Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
3
|
Antitumor Effect of Si-Jun-Zi Decoction on SGC7901 Gastric Cancer Cells by CMTM2 Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4675815. [PMID: 35873650 PMCID: PMC9303151 DOI: 10.1155/2022/4675815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
The Si-Jun-Zi decoction (SJZ), a traditional Chinese medicine (TCM) formula, is used clinically against multiple malignancies, including gastric cancer (GC). In previous study, we have shown that SJZ plays an anticancer role in SGC7901 cell xenograft mice models. However, the underlying mechanisms are unclear. The objective of this study was to evaluate the effect and mechanism of SJZ on the proliferation, migration, invasion, and cancer stem cell-like properties of GC cells. High-throughput mRNA sequencing analysis was performed to investigate the global alterations in gene expression in xenograft tumors, and 56 significantly differentially expressed genes (43 upregulated and 13 downregulated genes) were identified between the SJZ group and the Model group totally. We focused on CMTM2, which was significantly increased after SJZ intervention, as a candidate target gene of SJZ. The results indicated that CMTM2 expression was elevated in SJZ-treated SGC7901 cells and knocking-down CMTM2 expression partially hampered the inhibitory effects of SJZ on the proliferation, migration, and invasion of GC cells. Moreover, SJZ treatment repressed the spheroid and colony-forming capacity in GC cells, accompanied by downregulation of stem cell markers including SOX2, NANOG, and CD44. CMTM2 knockdown antagonized the effects of SJZ on the cancer stem cell-like properties of SGC7901 cells. Thus, SJZ effectively suppressed the proliferation, migration, invasion, and cancer stem cell-like properties of GC cells in vitro by upregulating CMTM2 expression.
Collapse
|