1
|
Singh S, Singh H, Mittal N, Kaur Punj G, Kumar L, Fante KA. A hybrid swarm intelligent optimization algorithm for antenna design problems. Sci Rep 2025; 15:4444. [PMID: 39910107 PMCID: PMC11799497 DOI: 10.1038/s41598-025-88846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Meta-heuristic optimization algorithms have seen significant advancements due to their diverse applications in solving complex problems. However, no single algorithm can effectively solve all optimization challenges. The Naked Mole-Rat Algorithm (NMRA), inspired by the mating patterns of naked mole-rats, has shown promise but suffers from poor convergence accuracy and a tendency to get trapped in local optima. To address these limitations, this paper proposes an enhanced version of NMRA, called Salp Swarm and Seagull Optimization-based NMRA (SSNMRA), which integrates the search mechanisms of the Seagull Optimization Algorithm (SOA) and the Salp Swarm Algorithm (SSA). This hybrid approach improves the exploration capabilities and convergence performance of NMRA. The effectiveness of SSNMRA is validated through the CEC 2019 benchmark test suite and applied to various electromagnetic optimization problems. Experimental results demonstrate that SSNMRA outperforms existing state-of-the-art algorithms, offering superior optimization capability and enhanced convergence accuracy, making it a promising solution for complex antenna design and other electromagnetic applications.
Collapse
Affiliation(s)
- Supreet Singh
- School of Computer Science, UPES, Dehradun, Uttarakhand, India
| | - Harbinder Singh
- Department of Electronics & Communication Engineering, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Nitin Mittal
- Skill Faculty of Engineering and Technology, Shri Viswakarma Skill University, Dudhola, Haryana, India
| | - Gurpreet Kaur Punj
- Computer Science & Engineering Department, Punjabi University, Patiala, Punjab, India
| | - Lalit Kumar
- Skill Faculty of Engineering and Technology, Shri Viswakarma Skill University, Dudhola, Haryana, India
- Department of Robotics and Automation, Delhi Skill and Entrepreneurship University, New Delhi, India
| | - Kinde Anlay Fante
- Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia.
| |
Collapse
|
2
|
Abualigah L, Diabat A, Svetinovic D, Elaziz MA. Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems. JOURNAL OF INTELLIGENT MANUFACTURING 2023; 34:2693-2728. [DOI: 10.1007/s10845-022-01921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/31/2022] [Indexed: 09/02/2023]
|
3
|
A Modified Reptile Search Algorithm for Numerical Optimization Problems. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9752003. [PMID: 36262616 PMCID: PMC9576354 DOI: 10.1155/2022/9752003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
The reptile search algorithm (RSA) is a swarm-based metaheuristic algorithm inspired by the encirclement and hunt mechanisms of crocodiles. Compared with other algorithms, RSA is competitive but still suffers from low population diversity, unbalanced exploitation and exploration, and the tendency to fall into local optima. To overcome these shortcomings, a modified variant of RSA, named MRSA, is proposed in this paper. First, an adaptive chaotic reverse learning strategy is employed to enhance the population diversity. Second, an elite alternative pooling strategy is proposed to balance exploitation and exploration. Finally, a shifted distribution estimation strategy is used to correct the evolutionary direction and improve the algorithm performance. Subsequently, the superiority of MRSA is verified using 23 benchmark functions, IEEE CEC2017 benchmark functions, and robot path planning problems. The Friedman test, the Wilcoxon signed-rank test, and simulation results show that the proposed MRSA outperforms other comparative algorithms in terms of convergence accuracy, convergence speed, and stability.
Collapse
|
4
|
Ch LK, Kamboj VK, Bath SK. Hybridizing slime mould algorithm with simulated annealing algorithm: a hybridized statistical approach for numerical and engineering design problems. COMPLEX INTELL SYST 2022; 9:1525-1582. [PMID: 36160761 PMCID: PMC9490722 DOI: 10.1007/s40747-022-00852-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
The existing slime mould algorithm clones the uniqueness of the phase of oscillation of slime mould conduct and exhibits slow convergence in local search space due to poor exploitation phase. This research work exhibits to discover the best solution for objective function by commingling slime mould algorithm and simulated annealing algorithm for better variation of parameters and named as hybridized slime mould algorithm-simulated annealing algorithm. The simulated annealing algorithm improves and accelerates the effectiveness of slime mould technique as well as assists to take off from the local optimum. To corroborate the worth and usefulness of the introduced strategy, nonconvex, nonlinear, and typical engineering design difficulties were analyzed for standard benchmarks and interdisciplinary engineering design concerns. The proposed technique version is used to evaluate six, five, five unimodal, multimodal and fixed-dimension benchmark functions, respectively, also including 11 kinds of interdisciplinary engineering design difficulties. The technique's outcomes were compared to the results of other on-hand optimization methods, and the experimental results show that the suggested approach outperforms the other optimization techniques.
Collapse
Affiliation(s)
- Leela Kumari Ch
- Domain of Power Systems, School of Electronics and Electrical Engineering, Lovely Professional University, Punjab, India
| | - Vikram Kumar Kamboj
- Domain of Power Systems, School of Electronics and Electrical Engineering, Lovely Professional University, Punjab, India
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - S. K. Bath
- Department of Electrical
Engineering, GZSCCET
MRSPTU Bathinda, Punjab, India
| |
Collapse
|
5
|
Baghdadi NA, Malki A, Magdy Balaha H, AbdulAzeem Y, Badawy M, Elhosseini M. Classification of breast cancer using a manta-ray foraging optimized transfer learning framework. PeerJ Comput Sci 2022; 8:e1054. [PMID: 36092017 PMCID: PMC9454783 DOI: 10.7717/peerj-cs.1054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Due to its high prevalence and wide dissemination, breast cancer is a particularly dangerous disease. Breast cancer survival chances can be improved by early detection and diagnosis. For medical image analyzers, diagnosing is tough, time-consuming, routine, and repetitive. Medical image analysis could be a useful method for detecting such a disease. Recently, artificial intelligence technology has been utilized to help radiologists identify breast cancer more rapidly and reliably. Convolutional neural networks, among other technologies, are promising medical image recognition and classification tools. This study proposes a framework for automatic and reliable breast cancer classification based on histological and ultrasound data. The system is built on CNN and employs transfer learning technology and metaheuristic optimization. The Manta Ray Foraging Optimization (MRFO) approach is deployed to improve the framework's adaptability. Using the Breast Cancer Dataset (two classes) and the Breast Ultrasound Dataset (three-classes), eight modern pre-trained CNN architectures are examined to apply the transfer learning technique. The framework uses MRFO to improve the performance of CNN architectures by optimizing their hyperparameters. Extensive experiments have recorded performance parameters, including accuracy, AUC, precision, F1-score, sensitivity, dice, recall, IoU, and cosine similarity. The proposed framework scored 97.73% on histopathological data and 99.01% on ultrasound data in terms of accuracy. The experimental results show that the proposed framework is superior to other state-of-the-art approaches in the literature review.
Collapse
Affiliation(s)
- Nadiah A. Baghdadi
- College of Nursing, Nursing Management and Education Department, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amer Malki
- College of Computer Science and Engineering, Taibah University, Yanbu, Saudi Arabia
| | - Hossam Magdy Balaha
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Yousry AbdulAzeem
- Computer Engineering Department, Misr Higher Institute for Engineering and Technology, Mansoura, Egypt
| | - Mahmoud Badawy
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Mostafa Elhosseini
- College of Computer Science and Engineering, Taibah University, Yanbu, Saudi Arabia
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Abstract
The Harris hawk optimizer is a recent population-based metaheuristics algorithm that simulates the hunting behavior of hawks. This swarm-based optimizer performs the optimization procedure using a novel way of exploration and exploitation and the multiphases of search. In this review research, we focused on the applications and developments of the recent well-established robust optimizer Harris hawk optimizer (HHO) as one of the most popular swarm-based techniques of 2020. Moreover, several experiments were carried out to prove the powerfulness and effectivness of HHO compared with nine other state-of-art algorithms using Congress on Evolutionary Computation (CEC2005) and CEC2017. The literature review paper includes deep insight about possible future directions and possible ideas worth investigations regarding the new variants of the HHO algorithm and its widespread applications.
Collapse
|
7
|
An innovative quadratic interpolation salp swarm-based local escape operator for large-scale global optimization problems and feature selection. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07391-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Almodfer R, Mudhsh M, Alshathri S, Abualigah L, Abd Elaziz M, Shahzad K, Issa M. Improving Parameter Estimation of Fuel Cell Using Honey Badger Optimization Algorithm. FRONTIERS IN ENERGY RESEARCH 2022; 10. [DOI: 10.3389/fenrg.2022.875332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In this study, we proposed an alternative method to determine the parameter of the proton exchange membrane fuel cell (PEMFC) since there are multiple variable quantities with diverse nonlinear characteristics included in the PEMFC design, which is specified correctly to ensure effective modeling. The distinctive model of FCs is critical in determining the effectiveness of the cells’ inquiry. The design of FC has a significant influence on the simulation research of such methods, which have been used in a variety of applications. The developed method depends on using the honey badger algorithm (HBA) as a new identification approach for identifying the parameters of the PEMFC. In the presented method, the minimal value of the sum square error (SSE) is applied to determine the optimal fitness function. A set of experimental series has been conducted utilizing three datasets entitled 250-W stack, BCS 500-W, and NedStack PS6 to justify the usage of the HBA to determine the PEMFC’s parameters. The results of the competitive algorithms are assessed using SSE and standard deviation metrics after numerous independent runs. The findings revealed that the presented approach produced promising results and outperformed the other comparison approaches.
Collapse
|
9
|
Almotairi KH, Abualigah L. Improved reptile search algorithm with novel mean transition mechanism for constrained industrial engineering problems. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07369-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
A Normal Distributed Dwarf Mongoose Optimization Algorithm for Global Optimization and Data Clustering Applications. Symmetry (Basel) 2022. [DOI: 10.3390/sym14051021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As data volumes have increased and difficulty in tackling vast and complicated problems has emerged, the need for innovative and intelligent solutions to handle these difficulties has become essential. Data clustering is a data mining approach that clusters a huge amount of data into a number of clusters; in other words, it finds symmetric and asymmetric objects. In this study, we developed a novel strategy that uses intelligent optimization algorithms to tackle a group of issues requiring sophisticated methods to solve. Three primary components are employed in the suggested technique, named GNDDMOA: Dwarf Mongoose Optimization Algorithm (DMOA), Generalized Normal Distribution (GNF), and Opposition-based Learning Strategy (OBL). These parts are used to organize the executions of the proposed method during the optimization process based on a unique transition mechanism to address the critical limitations of the original methods. Twenty-three test functions and eight data clustering tasks were utilized to evaluate the performance of the suggested method. The suggested method’s findings were compared to other well-known approaches. In all of the benchmark functions examined, the suggested GNDDMOA approach produced the best results. It performed very well in data clustering applications showing promising performance.
Collapse
|
11
|
A Hybrid Arithmetic Optimization and Golden Sine Algorithm for Solving Industrial Engineering Design Problems. MATHEMATICS 2022. [DOI: 10.3390/math10091567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arithmetic Optimization Algorithm (AOA) is a physically inspired optimization algorithm that mimics arithmetic operators in mathematical calculation. Although the AOA has an acceptable exploration and exploitation ability, it also has some shortcomings such as low population diversity, premature convergence, and easy stagnation into local optimal solutions. The Golden Sine Algorithm (Gold-SA) has strong local searchability and fewer coefficients. To alleviate the above issues and improve the performance of AOA, in this paper, we present a hybrid AOA with Gold-SA called HAGSA for solving industrial engineering design problems. We divide the whole population into two subgroups and optimize them using AOA and Gold-SA during the searching process. By dividing these two subgroups, we can exchange and share profitable information and utilize their advantages to find a satisfactory global optimal solution. Furthermore, we used the Levy flight and proposed a new strategy called Brownian mutation to enhance the searchability of the hybrid algorithm. To evaluate the efficiency of the proposed work, HAGSA, we selected the CEC 2014 competition test suite as a benchmark function and compared HAGSA against other well-known algorithms. Moreover, five industrial engineering design problems were introduced to verify the ability of algorithms to solve real-world problems. The experimental results demonstrate that the proposed work HAGSA is significantly better than original AOA, Gold-SA, and other compared algorithms in terms of optimization accuracy and convergence speed.
Collapse
|
12
|
Modified Remora Optimization Algorithm for Global Optimization and Multilevel Thresholding Image Segmentation. MATHEMATICS 2022. [DOI: 10.3390/math10071014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Image segmentation is a key stage in image processing because it simplifies the representation of the image and facilitates subsequent analysis. The multi-level thresholding image segmentation technique is considered one of the most popular methods because it is efficient and straightforward. Many relative works use meta-heuristic algorithms (MAs) to determine threshold values, but they have issues such as poor convergence accuracy and stagnation into local optimal solutions. Therefore, to alleviate these shortcomings, in this paper, we present a modified remora optimization algorithm (MROA) for global optimization and image segmentation tasks. We used Brownian motion to promote the exploration ability of ROA and provide a greater opportunity to find the optimal solution. Second, lens opposition-based learning is introduced to enhance the ability of search agents to jump out of the local optimal solution. To substantiate the performance of MROA, we first used 23 benchmark functions to evaluate the performance. We compared it with seven well-known algorithms regarding optimization accuracy, convergence speed, and significant difference. Subsequently, we tested the segmentation quality of MORA on eight grayscale images with cross-entropy as the objective function. The experimental metrics include peak signal-to-noise ratio (PSNR), structure similarity (SSIM), and feature similarity (FSIM). A series of experimental results have proved that the MROA has significant advantages among the compared algorithms. Consequently, the proposed MROA is a promising method for global optimization problems and image segmentation.
Collapse
|
13
|
Boosting arithmetic optimization algorithm by sine cosine algorithm and levy flight distribution for solving engineering optimization problems. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-06906-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Abualigah L, Elaziz MA, Sumari P, Khasawneh AM, Alshinwan M, Mirjalili S, Shehab M, Abuaddous HY, Gandomi AH. Black hole algorithm: A comprehensive survey. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02980-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Abd Elaziz M, Ewees AA, Yousri D, Abualigah L, Al-qaness MAA. Modified marine predators algorithm for feature selection: case study metabolomics. Knowl Inf Syst 2022. [DOI: 10.1007/s10115-021-01641-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: a comprehensive survey, applications, comparative analysis, and results. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06747-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Zheng R, Jia H, Abualigah L, Liu Q, Wang S. An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:473-512. [PMID: 34903000 DOI: 10.3934/mbe.2022023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of insufficient exploration capability and is likely to fall into local optima. To improve the searching quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer probability (RMOP) to increase the population diversity for better global search. And then the forced switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. When the search agents cannot find better positions within a certain number of iterations, the proposed FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-known optimization algorithms. The experimental results show that the proposed algorithm is superior to other comparative algorithms on most of the test functions. Furthermore, the test results of two training problems of multi-layer perceptron (MLP) and three classical engineering design problems also indicate that the proposed IAOA is highly effective when dealing with real-world problems.
Collapse
Affiliation(s)
- Rong Zheng
- School of Information Engineering, Sanming University, Sanming 365004, China
| | - Heming Jia
- School of Information Engineering, Sanming University, Sanming 365004, China
| | - Laith Abualigah
- Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan
- School of Computer Science, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Qingxin Liu
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Shuang Wang
- School of Information Engineering, Sanming University, Sanming 365004, China
| |
Collapse
|
18
|
Lin S, Jia H, Abualigah L, Altalhi M. Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures. ENTROPY 2021; 23:e23121700. [PMID: 34946006 PMCID: PMC8700578 DOI: 10.3390/e23121700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
Image segmentation is a fundamental but essential step in image processing because it dramatically influences posterior image analysis. Multilevel thresholding image segmentation is one of the most popular image segmentation techniques, and many researchers have used meta-heuristic optimization algorithms (MAs) to determine the threshold values. However, MAs have some defects; for example, they are prone to stagnate in local optimal and slow convergence speed. This paper proposes an enhanced slime mould algorithm for global optimization and multilevel thresholding image segmentation, namely ESMA. First, the Levy flight method is used to improve the exploration ability of SMA. Second, quasi opposition-based learning is introduced to enhance the exploitation ability and balance the exploration and exploitation. Then, the superiority of the proposed work ESMA is confirmed concerning the 23 benchmark functions. Afterward, the ESMA is applied in multilevel thresholding image segmentation using minimum cross-entropy as the fitness function. We select eight greyscale images as the benchmark images for testing and compare them with the other classical and state-of-the-art algorithms. Meanwhile, the experimental metrics include the average fitness (mean), standard deviation (Std), peak signal to noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM), and Wilcoxon rank-sum test, which is utilized to evaluate the quality of segmentation. Experimental results demonstrated that ESMA is superior to other algorithms and can provide higher segmentation accuracy.
Collapse
Affiliation(s)
- Shanying Lin
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
- Correspondence: (S.L.); (H.J.)
| | - Heming Jia
- School of Information Engineering, Sanming University, Sanming 365004, China
- Correspondence: (S.L.); (H.J.)
| | - Laith Abualigah
- Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan; or
- School of Computer Science, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Maryam Altalhi
- Department of Management Information System, College of Business Administration, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| |
Collapse
|
19
|
Nadimi-Shahraki MH, Fatahi A, Zamani H, Mirjalili S, Abualigah L. An Improved Moth-Flame Optimization Algorithm with Adaptation Mechanism to Solve Numerical and Mechanical Engineering Problems. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1637. [PMID: 34945943 PMCID: PMC8700729 DOI: 10.3390/e23121637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
Moth-flame optimization (MFO) algorithm inspired by the transverse orientation of moths toward the light source is an effective approach to solve global optimization problems. However, the MFO algorithm suffers from issues such as premature convergence, low population diversity, local optima entrapment, and imbalance between exploration and exploitation. In this study, therefore, an improved moth-flame optimization (I-MFO) algorithm is proposed to cope with canonical MFO's issues by locating trapped moths in local optimum via defining memory for each moth. The trapped moths tend to escape from the local optima by taking advantage of the adapted wandering around search (AWAS) strategy. The efficiency of the proposed I-MFO is evaluated by CEC 2018 benchmark functions and compared against other well-known metaheuristic algorithms. Moreover, the obtained results are statistically analyzed by the Friedman test on 30, 50, and 100 dimensions. Finally, the ability of the I-MFO algorithm to find the best optimal solutions for mechanical engineering problems is evaluated with three problems from the latest test-suite CEC 2020. The experimental and statistical results demonstrate that the proposed I-MFO is significantly superior to the contender algorithms and it successfully upgrades the shortcomings of the canonical MFO.
Collapse
Affiliation(s)
- Mohammad H. Nadimi-Shahraki
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran; (A.F.); (H.Z.)
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Ali Fatahi
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran; (A.F.); (H.Z.)
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Hoda Zamani
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran; (A.F.); (H.Z.)
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane 4006, Australia
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| | - Laith Abualigah
- Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan;
- School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| |
Collapse
|