1
|
Wei Y, Zhao X, Zhang Y, Cui C, Han S, Yang C, Yin H. miR-7 promotes apoptosis and autophagy of granulosa cells by targeting KLF4 via JAK/STAT3 signaling pathway in chickens. Theriogenology 2024; 230:322-329. [PMID: 39369624 DOI: 10.1016/j.theriogenology.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Granulosa cell (GC) death, which leads to follicular atresia, primarily occurs through apoptosis and autophagy. miRNAs are known to be key regulators of autophagy and apoptosis. Although miR-7 acting as a key regulator of follicular atresia, its precise role in granulosa cell autophagy and apoptosis remains to be fully elucidated. In this study, we found that miR-7 was highly expressed in the follicle based on qPCR analysis. Subsequently, transfection of miR-7 inhibitors and mimics downregulated or upregulated the expression of miR-7 and promoted autophagic and apoptotic processes in chicken follicle granulosa cells. Mechanistically, through dual-luciferase reporter gene assays, we validated that KLF4 is a target gene of miR-7. Contrarily, KLF4 was found to negatively regulate autophagy and apoptosis in follicular granulosa cells as evidenced by genetic intervention of KLF4 silencing and overexpression. Furthermore, JAK/STAT3 signaling pathway was confirmed to mediate the regulation of miR-7-KLF4 axis on GC autophagy and apoptosis. These findings offer evidences of the crucial involvement of the miR-7-KLF4 signaling axis in determining autophagy and apoptosis of GCs. This study could offer an important theoretical basis for the use of molecular-assisted breeding in chickens.
Collapse
Affiliation(s)
- Yimeng Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Can Cui
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shunshun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Brinca AT, Peiró AM, Evangelio PM, Eleno I, Oliani AH, Silva V, Vicente LF, Ramalhinho AC, Gallardo E. Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis. Int J Mol Sci 2024; 25:7177. [PMID: 39000283 PMCID: PMC11241429 DOI: 10.3390/ijms25137177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Infertility is recognized globally as a social disease and a growing medical condition, posing a significant challenge to modern reproductive health. Endometriosis, the third-most frequent gynecologic disorder, is one of the most common and intricate conditions that can lead to female infertility. Despite extensive research, the etiology, malignant transformation, and biological therapy of endometriosis remain unknown. Blood and follicular fluid are two matrices that have been carefully studied and can provide insights into women's health. These matrices are clinically significant because they contain metabolites closely associated with women's illness stage and reproductive outcomes. Nowadays, the application of metabolomic analysis in biological matrices may be able to predict the outcome of assisted reproductive technologies with greater precision. From a molecular viewpoint on reproductive health, we evaluate and compare the utilization of human follicular fluid and blood as matrices in analysis for diagnostic and assisted reproductive technology (ART) predictors of success for endometriosis patients. In the follicular fluid (FF), plasma, and serum of endometriosis-affected women, researchers identified dysregulations of oxidative stress, upregulation of several immune factors, and aberrations in energy metabolic pathways. The altered signatures negatively correlate with the overall oocyte and embryo quality and fertilization rate.
Collapse
Affiliation(s)
- Ana Teresa Brinca
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal;
| | - Ana Maria Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, 03010 Alicante, Spain;
- Institute of Bioengineering, Miguel Hernández University, 03202 Elche, Spain
| | | | - Irene Eleno
- Unidad de Reproduccion, Servicio de Ginecologia y Obstetricia, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain;
| | - Antonio Helio Oliani
- Assisted Reproduction Laboratory, Cova da Beira Local Health Unit, 6200-251 Covilhã, Portugal;
- São José do Rio Preto School of Medicine, Gynaecology and Obstetrics, São José do Rio Preto 15090-000, Brazil
| | - Vladimiro Silva
- Ferticentro—Centro de Estudos de Fertilidade S.A., 3000-316 Coimbra, Portugal;
- Procriar—Centro de Procriação Medicamente Assistida, 4100-130 Porto, Portugal
| | | | - Ana Cristina Ramalhinho
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal;
- Assisted Reproduction Laboratory, Cova da Beira Local Health Unit, 6200-251 Covilhã, Portugal;
| | - Eugenia Gallardo
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
3
|
Xie Y, Chen J, Liu K, Huang J, Zeng Y, Gao M, Qian Y, Liu L, Tan Y, Nie X. Differential expression of follicular fluid exosomal microRNA in women with diminished ovarian reserve. J Assist Reprod Genet 2024; 41:1087-1096. [PMID: 38321265 PMCID: PMC11052957 DOI: 10.1007/s10815-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE Decreased ovarian reserve function is mainly characterized by female endocrine disorders and fertility decline. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been shown to regulate the function of granulosa cells (GCs). The present study explored differentially expressed miRNAs (DEmiRNAs) in patients with diminished ovarian reserve (DOR). METHODS FF was collected from 12 DOR patients and 12 healthy controls. DEmiRNAs between the two groups were identified and analyzed using high-throughput sequencing technology and validated by real-time quantitative PCR (RT-qPCR). RESULTS A total of 592 DEmiRNAs were identified using high-throughput miRNA sequencing, of which 213 were significantly upregulated and 379 were significantly downregulated. The sequencing results were further validated by RT-qPCR. These DEmiRNA target genes were mainly involved in the cancer pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, regulation of actin cytoskeleton signaling pathway, and biological processes related to protein binding, nucleoplasm, cytoplasm, and cell membrane. CONCLUSION FF exosomal miRNAs are significantly differentially expressed in DOR patients versus non-DOR patients, underscoring their crucial role in regulating the pathogenesis of DOR.
Collapse
Affiliation(s)
- Ying Xie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Juan Chen
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Kailu Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jingyu Huang
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yaqiong Zeng
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Mengya Gao
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yu Qian
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Li Liu
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong Tan
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Xiaowei Nie
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
4
|
Huang E, Wang X, Chen L. Regulated Cell Death in Endometriosis. Biomolecules 2024; 14:142. [PMID: 38397379 PMCID: PMC10886833 DOI: 10.3390/biom14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Regulated cell death (RCD) represents a distinct mode of cell demise, differing from accidental cell death (ACD), characterized by specific signaling cascades orchestrated by diverse biomolecules. The regular process of cell death plays a crucial role in upholding internal homeostasis, acting as a safeguard against biological or chemical damage. Nonetheless, specific programmed cell deaths have the potential to activate an immune-inflammatory response, potentially contributing to diseases by enlisting immune cells and releasing pro-inflammatory factors. Endometriosis, a prevalent gynecological ailment, remains incompletely understood despite substantial progress in unraveling associated signaling pathways. Its complexity is intricately tied to the dysregulation of inflammatory immune responses, with various RCD processes such as apoptosis, autophagic cell death, pyroptosis, and ferroptosis implicated in its development. Notably, limited research explores the association between endometriosis and specific RCD pathways like pyroptosis and cuproptosis. The exploration of regulated cell death in the context of endometriosis holds tremendous potential for further advancements. This article thoroughly reviews the molecular mechanisms governed by regulated cell death and their implications for endometriosis. A comprehensive understanding of the regulated cell death mechanism in endometriosis has the potential to catalyze the development of promising therapeutic strategies and chart the course for future research directions in the field.
Collapse
Affiliation(s)
| | | | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.H.)
| |
Collapse
|
5
|
Zhang QC. METTL3 is aberrantly expressed in endometriosis and suppresses proliferation, invasion, and migration of endometrial stromal cells. Kaohsiung J Med Sci 2023; 39:266-277. [PMID: 36546578 DOI: 10.1002/kjm2.12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Endometriosis (EM) is one of the leading gynecological disorders, and associated with excessive functioning of endometrial stromal cells (ESCs). The current study was conducted to determine the expression and role of methyltransferase-like 3 (METTL3) in the proliferation, invasion, and migration of ESCs in EM. The documented expression levels of METTL3, microRNA (miR)-21-5p, and WNT inhibitory factor 1 (WIF1) in eutopic (Eut) and ectopic (Ect) endometrial tissues and ESCs were determined by a combination of real-time quantitative polymerase chain reaction and Western blot assay. After transfection with pcDNA3.1-METTL3, miR-21-5p mimic, and WIF1 small interfering RNA, cell counting kit-8, colony formation, and Transwell assays were performed in the Ect ESCs (Ect-ESCs). Subsequently, the binding of miR-21-5p to METTL3 was analyzed, along with quantification of the N6-methyladenosine (m6A) level, the enrichments of METTL3 and m6A on WIF1, and the mRNA stability of WIF1. In our findings, METTL3 was downregulated in the EM tissues and cells. METTL3 overexpression intrinsically reduced the proliferation, invasion, and migration of Ect-ESCs. miR-21-5p inhibited the METTL3 expression while METTL3 enhanced the mRNA stability and expression of WIF1 via m6A modification. Additionally, a negative correlation of METTL3 was identified with miR-21-5p along with a positive correlation with the WIF1 mRNA in EM tissues. The miR-21-5p overexpression or WIF1 downregulation enhanced the proliferation, invasion, and migration of Ect-ESCs. Collectively, miR-21-5p inhibited the METTL3-mediated m6A modification and mRNA stability of WIF1, thereby facilitating the proliferation, invasion, and migration of Ect-ESCs.
Collapse
Affiliation(s)
- Qian-Chen Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Proteomic Analysis of Human Follicular Fluid Reveals the Pharmacological Mechanisms of the Chinese Patent Drug Kunling Pill for Improving Diminished Ovarian Reserve. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5929694. [PMID: 35668784 PMCID: PMC9167067 DOI: 10.1155/2022/5929694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the pharmacological mechanism of a Chinese patent drug (Kunling Pill (KLP)) on improving diminished ovarian reserve based on proteomic analysis. Methods. A total of 18 patients divided into three groups (the normal ovary reserve (NOR), diminished ovary reserve (DOR), and KLP groups) undergoing assisted reproductive technology by standard ovarian stimulation protocols were recruited to collect follicular fluid. Data-independent acquisition mass spectrometry was used to identify differentially expressed proteins by nano-LC-MS/MS. Bioinformatic analysis was conducted to predict the functions and pathways of the identified proteins. Clinical, hormonal, and biochemical parameters were also analyzed in the three groups. Results. A total of 144 differentially expressed proteins were screened out, including 56 proteins that were downregulated and 88 proteins that were upregulated in the DOR group compared with the NOR group, while 27 proteins were shared in the KLP-treated group. Among them, 10 proteins were upregulated and 17 proteins were downregulated in the KLP-treated group compared with the DOR group. The most enriched biological processes accounted for 28 GO terms, including cellular process, biological regulation, metabolic process, and regulation of biological process. Significant pathways were associated with fatty acid elongation, fatty acid degradation, fatty acid metabolism, nicotinate and nicotinamide metabolism, and valine, leucine, and isoleucine degradation. Conclusion. Our study provides the proteome profiles of human follicular fluid from DOR patients treated by KLP. Functional analyses of proteome datasets revealed that core proteins (SAA1, MIF, and PRDX5) and related pathways (fatty acid metabolism, nicotinate and nicotinamide metabolism, and tyrosine and purine metabolism) are possible pharmacological mechanisms through which KLP improves DOR. Therefore, these findings may help better understand the complex mechanisms through which DOR is treated by the Chinese patent drug KLP.
Collapse
|