1
|
Huang G, Zhan X, Shen L, Lou L, Dai Y, Jiang A, Gao Y, Wang Y, Xie X, Zhang J. APOBEC family reshapes the immune microenvironment and therapy sensitivity in clear cell renal cell carcinoma. Clin Exp Med 2024; 24:212. [PMID: 39249558 PMCID: PMC11383847 DOI: 10.1007/s10238-024-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Emerging evidence suggests that the APOBEC family is implicated in multiple cancers and might be utilized as a new target for cancer detection and treatment. However, the dysregulation and clinical implication of the APOBEC family in clear cell renal cell cancer (ccRCC) remain elusive. TCGA multiomics data facilitated a comprehensive exploration of the APOBEC family across cancers, including ccRCC. Remodeling analysis classified ccRCC patients into two distinct subgroups: APOBEC family pattern cancer subtype 1 (APCS1) and subtype 2 (APCS2). The study investigated differences in clinical parameters, tumor immune microenvironment, therapeutic responsiveness, and genomic mutation landscapes between these subtypes. An APOBEC family-related risk model was developed and validated for predicting ccRCC patient prognosis, demonstrating good sensitivity and specificity. Finally, the overview of APOBEC3B function was investigated in multiple cancers and verified in clinical samples. APCS1 and APCS2 demonstrated considerably distinct clinical features and biological processes in ccRCC. APCS1, an aggressive subtype, has advanced clinical stage and a poor prognosis. APCS1 exhibited an oncogenic and metabolically active phenotype. APCS1 also exhibited a greater tumor mutation load and immunocompromised condition, resulting in immunological dysfunction and immune checkpoint treatment resistance. The genomic copy number variation of APCS1, including arm gain and loss, was much more than that of APCS2, which may help explain the tired immune system. Furthermore, the two subtypes have distinct drug sensitivity patterns in clinical specimens and matching cell lines. Finally, we developed a predictive risk model based on subtype biomarkers that performed well for ccRCC patients and validated the clinical impact of APOBEC3B. Aberrant APOBEC family expression patterns might modify the tumor immune microenvironment by increasing the genome mutation frequency, thus inducing an immune-exhausted phenotype. APOBEC family-based molecular subtypes could strengthen the understanding of ccRCC characterization and guide clinical treatment. Targeting APOBEC3B may be regarded as a new therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Guiying Huang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Clinical Laboratory, Lishui Central Hospital, Lishui, Zhejiang, China
| | - Xianlin Zhan
- Department of Clinical Laboratory, PLA Navy Medical Center, Shanghai, China
| | - Lihong Shen
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Luping Lou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuehong Dai
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Aiming Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Cheng J, Chen F, Cheng Y. Construction and Evaluation of a Risk Score Model for Lymph Node Metastasis-Associated Circadian Clock Genes in Esophageal Squamous Carcinoma. Cells 2022; 11:cells11213432. [PMID: 36359828 PMCID: PMC9655457 DOI: 10.3390/cells11213432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Studies suggested that circadian clock genes (CCGs) in human esophageal squamous carcinoma (ESCC) samples are dysregulated. However, the relevance of CCGs to lymph node metastasis (LNM) and prognosis of ESCC remains unclear. Methods: The differentially expressed genes (DEGs) between normal and ESCC samples in The Cancer Genome Atlas database (TCGA) database were intersected with the genes associated with LNM (LNMGs) in ESCC samples and 300 CCGs to obtain the differentially expressed LNM-associated CCGs (DE-LNM-CCGs). The risk model was constructed by Cox regression analysis in the TCGA-ESCC training set, and the accuracy of the risk model was verified by risk profile and overall survival profile. Furthermore, differences of 23 immune cells, 13 immune functions, and immune checkpoint molecules between the high- and low-risk groups were assessed using the single-sample gene set enrichment analysis (ssGSEA) algorithm. Gene set enrichment analysis (GSEA) was conducted to investigate the functional differences between low- and high-risk groups. Finally, we validated the mRNA expression levels of prognostic model genes by quantitative real-time polymerase chain reaction (qRT-PCR). Results: A total of six DE-LNM-CCGs were identified in TCGA-ESCC. TP53 and NAGLU were selected by Cox regression analysis to construct the risk model. Risk profile plots, overall survival plots, and validation results of the risk model in the validation set indicated that the constructed risk model was reliable. The result of ssGSEA showed that the percentages of activated B cells, activated dendritic cells, effector memory CD8 T cells, immune function in neutrophils, plasmacytoid dendritic cells, T cell co-inhibition, and Type 17 T helper cells were different between the high- and low-risk groups. In addition, the expression of CD274, PDCD1, TNFRSF18, and TNFRSF9 was dysregulated between the high- and low-risk groups. GSEA revealed that the high-risk group was associated with cell differentiation, oxidative phosphorylation, and steroid biosynthesis pathways, while the low-risk group was associated with chromosome, ECM–receptor interaction, and other pathways. Finally, qRT-PCR results showed that the mRNA expression levels of two prognostic genes were consistent with TCGA. Conclusion: In conclusion, the risk model constructed based on TP53 and NAGLU could accurately predict the prognosis.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Cancer Center, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Fang Chen
- Department of Pharmacy, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan 250012, China
- Correspondence:
| |
Collapse
|
3
|
Guan Z, Luo L, Liu S, Guan Z, Zhang Q, Wu Z, Tao K. The role of TGR5 as an onco-immunological biomarker in tumor staging and prognosis by encompassing the tumor microenvironment. Front Oncol 2022; 12:953091. [PMID: 36338742 PMCID: PMC9630950 DOI: 10.3389/fonc.2022.953091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between G protein–coupled bile acid receptor 1 (TGR5, GPBAR1) and, specifically, cancer has been studied in in vivo and in vitro experiments, but there is still a lack of pan-cancer analysis to understand the prognostic significance and functioning mechanism of TGR5 in different cancer-driving oncogenic processes. Here, we used Gene Expression Integration, Human Protein Atlas, and The Cancer Genome Atlas (TCGA) to perform a pan-cancer analysis of the role of TGR5 in all 33 tumors. In all TCGA tumors, the TGR5 gene expression has been assessed, and we found that the high TGR5 gene expression in most cancers is associated with poor prognosis of overall survival for cancers such as glioblastoma multiforme (p = 0.0048), kidney renal papillary cell carcinoma (p = 0.033), lower grade glioma (p = 0.0028), thymoma (p = 0.048), and uveal melanoma (p = 0.004), and then the lower expression of TGR5 was linked with poor prognosis in cervical squamous cell carcinoma and endocervical adenocarcinoma (p = 0.014), malignant mesothelioma (MESO) (p = 0.048), sarcoma (p = 0.018), and skin cutaneous melanoma (p = 0.0085). The TGR5 expression was linked with the immune infiltration level of the macrophage M2_TIDE and was also associated with DNA methylation in ovarian and breast cancers. The regulation of hormone secretion, Rap1 pathway, osteoclast differentiation, and bile acid pathway was involved in the functional mechanism of TGR5. Besides, gene expressions were different in different tumors detected by RT-PCR, and cell activity experiments have also found that TGR5 can increase the activity of renal cell carcinoma and reduce the activity of skin cancer and osteosarcoma cells. In this investigation, the aim was to assess the comprehensive overview of the oncogenic roles of TGR5 in all TCGA tumors using pan-analysis.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengfu Liu
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kun Tao, ; Zhong Wu, ; Qinggang Zhang, ; Zhiqiang Guan,
| | - Qinggang Zhang
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- *Correspondence: Kun Tao, ; Zhong Wu, ; Qinggang Zhang, ; Zhiqiang Guan,
| | - Zhong Wu
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- *Correspondence: Kun Tao, ; Zhong Wu, ; Qinggang Zhang, ; Zhiqiang Guan,
| | - Kun Tao
- Department of Orthopedics, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- *Correspondence: Kun Tao, ; Zhong Wu, ; Qinggang Zhang, ; Zhiqiang Guan,
| |
Collapse
|