1
|
Michel LC, McCormick EM, Kievit RA. Gray and White Matter Metrics Demonstrate Distinct and Complementary Prediction of Differences in Cognitive Performance in Children: Findings from ABCD ( N = 11,876). J Neurosci 2024; 44:e0465232023. [PMID: 38388427 PMCID: PMC10957209 DOI: 10.1523/jneurosci.0465-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 02/24/2024] Open
Abstract
Individual differences in cognitive performance in childhood are a key predictor of significant life outcomes such as educational attainment and mental health. Differences in cognitive ability are governed in part by variations in brain structure. However, studies commonly focus on either gray or white matter metrics in humans, leaving open the key question as to whether gray or white matter microstructure plays distinct or complementary roles supporting cognitive performance. To compare the role of gray and white matter in supporting cognitive performance, we used regularized structural equation models to predict cognitive performance with gray and white matter measures. Specifically, we compared how gray matter (volume, cortical thickness, and surface area) and white matter measures (volume, fractional anisotropy, and mean diffusivity) predicted individual differences in cognitive performance. The models were tested in 11,876 children (ABCD Study; 5,680 female, 6,196 male) at 10 years old. We found that gray and white matter metrics bring partly nonoverlapping information to predict cognitive performance. The models with only gray or white matter explained respectively 15.4 and 12.4% of the variance in cognitive performance, while the combined model explained 19.0%. Zooming in, we additionally found that different metrics within gray and white matter had different predictive power and that the tracts/regions that were most predictive of cognitive performance differed across metrics. These results show that studies focusing on a single metric in either gray or white matter to study the link between brain structure and cognitive performance are missing a key part of the equation.
Collapse
Affiliation(s)
- Lea C Michel
- Cognitive Neuroscience Department, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Ethan M McCormick
- Cognitive Neuroscience Department, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
- Methodology and Statistics, Institute of Psychology, Leiden University, Leiden 2333 AK, The Netherlands
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina 27599-3270
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
2
|
Cooper AC, Tchernykh M, Shmuel A, Mendola JD. Diffusion tensor imaging of optic neuropathies: a narrative review. Quant Imaging Med Surg 2024; 14:1086-1107. [PMID: 38223128 PMCID: PMC10784057 DOI: 10.21037/qims-23-779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
Background and Objective Diffusion tensor imaging (DTI) has been implemented in a breadth of scientific investigations of optic neuropathies, though it has yet to be fully adopted for diagnosis or prognosis. This is potentially due to a lack of standardization and weak replication of results. The aim of this investigation was to review DTI results from studies specific to three distinct optic neuropathies in order to probe its current clinical utility. Methods We reviewed the DTI literature specific to primary open-angle glaucoma (POAG), optic neuritis (ON), and traumatic optic neuropathy (TON) by systematically searching the PubMed database on March 1st, 2023. Four distinct DTI metrics are considered: fractional anisotropy (FA), along with mean diffusivity (MD, axial diffusivity (AD), and radial diffusivity (RD). Results from within-group, between-group, and correlational studies were thoroughly assessed. Key Content and Findings POAG studies most consistently report a decrease in FA, especially in the optic radiations, followed in prevalence by an increase in RD and then MD, whilst AD yields conflicting results between studies. It is notable that there is not an equal distribution of investigated DTI metrics, with FA utilized the most, followed by MD, RD, and AD. Studies of ON are similar in that the most consistent findings are specific to FA, RD, and MD. These results are specific to the optic nerve and radiation since only one study measured the intermediary regions. More studies are needed to assess the effect that ON has on the tracts of the visual system. Finally, only three studies assessing DTI of TON have been performed to date, displaying low to moderate replicability of results. To improve the level of agreement between studies assessing each optic neuropathy, an increased level of standardization is recommended. Conclusions Both POAG and ON studies have yielded some prevalent DTI findings, both for contrast and correlation-based assessments. Although the clinical need is high for TON, considering the limitations of the current diagnostic tools, too few studies exist to make confident conclusions. Future use of standardized and longitudinal DTI, along with the foreseen methodological and technical improvements, is warranted to effectively study optic neuropathies.
Collapse
Affiliation(s)
- Austin C. Cooper
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Maxim Tchernykh
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
| | - Amir Shmuel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Departments of Physiology and Biomedical Engineering, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Janine D. Mendola
- McGill Vision Research and Department of Ophthalmology, McGill University, Montréal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Izuno S, Yoshihara K, Hosoi M, Eto S, Hirabayashi N, Todani T, Gondo M, Hayaki C, Anno K, Hiwatashi A, Sudo N. Psychological characteristics associated with the brain volume of patients with fibromyalgia. Biopsychosoc Med 2023; 17:36. [PMID: 37875931 PMCID: PMC10594713 DOI: 10.1186/s13030-023-00293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Fibromyalgia (FM) is a disease characterized by chronic widespread pain concomitant with psychiatric symptoms such as anxiety and depression. It has been reported that FM patients engage in pain catastrophizing. In this study, we investigated characteristics of the brain volume of female FM patients and the association between psychological indices and brain volume. Thirty-nine female FM patients and 25 female healthy controls (HCs) were recruited for the study, and five FM patients were excluded due to white matter lesions. The following analyses were performed: (1) T1-weighted MRI were acquired for 34 FM patients (age 41.6 ± 7.4) and 25 HCs (age 39.5 ± 7.4). SPM12 was used to compare their gray and white matter volumes. (2) Data from anxiety and depression questionnaires (State-Trait Anxiety Inventory and Hospital Anxiety and Depression Scale), the Pain Catastrophizing Scale (subscales rumination, helplessness, magnification), and MRI were acquired for 34 FM patients (age 41.6 ± 7.4). Correlation analysis was done of the psychological indices and brain volume. We found that (1) The white matter volume of the temporal pole was larger in the FM patient group than in the HC group. (2) Correlation analysis of the psychological indices and gray matter volume showed a negative correlation between trait anxiety and the amygdala. For the white matter volume, positive correlations were found between depression and the brainstem and between magnification and the postcentral gyrus. Changes in the brain volume of female FM patients may be related to anxiety, depression, and pain catastrophizing.
Collapse
Grants
- JP16K15414 Ministry of Education, Culture, Sports, Science and Technology
- JP19H03752 Ministry of Education, Culture, Sports, Science and Technology
- JP20K03417 Ministry of Education, Culture, Sports, Science and Technology
- JP19FG2001 Ministry of Health, Labour and Welfare
- JP20FC1056 Ministry of Health, Labour and Welfare
- JP19ek0610015h0003 Japan Agency for Medical Research and Development
- JP19dm0307104 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Satoshi Izuno
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Masako Hosoi
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
- Multidisciplinary Pain Center, Kyushu University Hospital, Fukuoka, Japan
| | - Sanami Eto
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | | | - Tae Todani
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Motoharu Gondo
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Chie Hayaki
- Department of Psychosomatic Medicine, Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Kozo Anno
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
- Multidisciplinary Pain Center, Kyushu University Hospital, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
- Multidisciplinary Pain Center, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|