1
|
Lu J, An Y, Wang X, Zhang C, Guo S, Ma Y, Qiu Y, Wang S. Alleviating effect of chlorogenic acid on oxidative damage caused by hydrogen peroxide in bovine intestinal epithelial cells. J Vet Med Sci 2024; 86:1016-1026. [PMID: 39069486 PMCID: PMC11422687 DOI: 10.1292/jvms.24-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Chlorogenic acid (CGA) is a polyphenol substance contained in many plants, which has good antioxidant activity. This experiment aimed to explore the protective effects of CGA on hydrogen peroxide (H2O2)-induced inflammatory response, apoptosis, and antioxidant capacity of bovine intestinal epithelial cells (BIECs-21) under oxidative stress and its mechanism. The results showed that compared with cells treated with H2O2 alone, CGA pretreatment could improve the viability of BIECs-21. Importantly, Chlorogenic acid pretreatment significantly reduced the formation of malondialdehyde (MDA), lowered reactive oxygen species (ROS) levels, and enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) (P<0.05). In addition, CGA can also improve the intestinal barrier by increasing the abundance of tight junction proteins claudin-1 and occludin. Meanwhile, CGA can reduce the gene expression levels of pro-inflammatory factors Interleukin-6 (IL-6) and Interleukin-8 (IL-8), increase the expression of anti-inflammatory factor Interleukin-10 (IL-10), promote the expression of the nuclear factor-related factor 2 (Nrf2) signaling pathway, enhance cell antioxidant capacity, and inhibit Nuclear Factor Kappa B (NF-κB) the activation of the signaling pathway reducing the inflammatory response, thereby alleviating inflammation and oxidative stress damage.
Collapse
Affiliation(s)
- Jia Lu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yongsheng An
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Guo
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yan Qiu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Zhang JN, Pei ZD, Wang WY, Zhao MY, Pei WH, Zhang H, Yin HB, Wang TM, Xin GZ, Xie M, Kang TG, Chen YH, Song HP. Integration of High-Resolution LC-Q-TOF Mass Spectrometry and Multidimensional Chemical-Biological Analysis to Detect Nanomolar-Level Acetylcholinesterase Inhibitors from Different Parts of Zanthoxylum nitidum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17328-17342. [PMID: 39045647 DOI: 10.1021/acs.jafc.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Zanthoxyli radix is a popular tea among the elderly, and it is believed to have a positive effect on Alzheimer's disease. In this study, a highly effective three-step strategy was proposed for comprehensive analysis of the active components and biological functions of Zanthoxylum nitidum (ZN), including high-resolution LC-Q-TOF mass spectrometry (HRMS), multivariate statistical analysis for heterogeneity (MSAH), and experimental and virtual screening for bioactivity analysis (EVBA). A total of 117 compounds were identified from the root, stem, and leaf of ZN through HRMS. Bioactivity assays showed that the order of acetylcholinesterase (AChE) inhibitory activity from strong to weak was root > stem > leaf. Nitidine, chelerythrine, and sanguinarine were found to be the main differential components of root, stem, and leaf by OPLS-DA. The IC50 values of the three compounds are 0.81 ± 0.02, 0.14 ± 0.01, and 0.48 ± 0.01 μM respectively, indicating that they are potent and high-quality AChE inhibitors. Molecular docking showed that pi-pi T-shaped interactions and pi-lone pairs played important roles in AChE inhibition. This study not only explains the biological function of Zanthoxyli radix in alleviating Alzheimer's disease to some extent, but also lays the foundation for the development of stem and leaf of ZN.
Collapse
Affiliation(s)
- Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zhi-Dong Pei
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wen-Yu Wang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ming-Yue Zhao
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wen-Han Pei
- Macau University of Science and Technology, Macau 999078, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Tian-Min Wang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ting-Guo Kang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
3
|
Zhuo Y, Fu X, Jiang Q, Lai Y, Gu Y, Fang S, Chen H, Liu C, Pan H, Wu Q, Fang J. Systems pharmacology-based mechanism exploration of Acanthopanax senticosusin for Alzheimer's disease using UPLC-Q-TOF-MS, network analysis, and experimental validation. Eur J Pharmacol 2023:175895. [PMID: 37422122 DOI: 10.1016/j.ejphar.2023.175895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease, characterized by progressive cognitive dysfunction and memory loss. However, the disease-modifying treatments for AD are still lacking. Traditional Chinese herbs, have shown their potentials as novel treatments for complex diseases, such as AD. PURPOSE This study was aimed at investigating the mechanism of action (MOA) of Acanthopanax senticosusin (AS) for treatment of AD. METHODS In this study, we firstly identified the chemical constituents in Acanthopanax senticosusin (AS) utilizing ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MS), and next built the drug-target network of these compounds. We next performed the systems pharmacology-based analysis to preliminary explore the MOA of AS against AD. Moreover, we applied the network proximity approach to identify the potential anti-AD components in AS. Finally, experimental validations, including animal behavior test, ELISA and TUNEL staining, were conducted to verify our systems pharmacology-based analysis. RESULTS 60 chemical constituents in AS were identified via the UPLC-Q-TOF-MS approach. The systems pharmacology-based analysis indicated that AS might exert its therapeutic effects on AD via acetylcholinesterase and apoptosis signaling pathway. To explore the material basis of AS against AD, we further identified 15 potential anti-AD components in AS. Consistently, in vivo experiments demonstrated that AS could protect cholinergic nervous system damage and decrease neuronal apoptosis caused by scopolamine. CONCLUSION Overall, this study applied systems pharmacology approach, via UPLC-Q-TOF-MS, network analysis, and experimental validation to decipher the potential molecular mechanism of AS against AD.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiling Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chenchen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
4
|
Setiadi AYLA, Karmawan LU. Anti-Arthritic and Anti-Inflammatory Effects of Andaliman Extract and Nanoandaliman in Inflammatory Arthritic Mice. Foods 2022; 11:foods11223576. [PMID: 36429168 PMCID: PMC9689885 DOI: 10.3390/foods11223576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammatory arthritis is a severe joint disease that causes long-lasting pain that reduces a patient's quality of life. Several commercial medicines have been used to reduce the inflammation in arthritis. However, they have side effects that affect other organs and increase the infection rate in the patient. Therefore, searching for alternative medicines from natural herbs to use as a substitute for chemical drugs and reduce the side effects of drugs has become the focus of investigation. Zanthoxylum acanthopodium DC., known as andaliman, is an endemic spice that originates from Tapanuli, North Sumatera (Indonesia). Our previous study confirmed that andaliman exerts anti-inflammatory and xanthin oxidase enzymatic inhibitory activities. Unfortunately, there are no in vivo studies on the efficacy of andaliman in reducing inflammation in arthritis. This research aimed to produce an andaliman extract rich in essential oils, to formulate andaliman extract in a nanoemulsion product, and to test their anti-arthritic and anti-inflammatory effects on suppressing the gene expression of inflammatory arthritis in vivo. Several steps were used to conduct this experiment, including andaliman extraction, bioactive compound identification, nanoandaliman formulation, in vivo inflammatory arthritis mice modeling using complete Freund's adjuvant (CFA), and gene expression quantification using quantitative PCR (qPCR). Andaliman extract and nanoandaliman effectively reduced arthritic scores in CFA-induced arthritic mice. Both treatments also demonstrated anti-inflammatory potential via blocking several arthritic inflammatory gene expressions from cartilage tissue and brain in CFA-induced mice. Nanoandaliman at low dose (25 mg/kg bw) exerted a higher suppressive effect against the gene expression of cox-2, il-ib, inos, and mmp-1 compared to that of andaliman extract. At high dose (100 mg/kg bw), andaliman extract effectively inhibited the expression of il-ib, inos, and mmp-1 genes in arthritic mice. These data suggest that nanoandaliman may be an alternative, natural anti-arthritic and anti-inflammatory candidate for the management of inflammatory arthritis.
Collapse
Affiliation(s)
| | - Listya Utami Karmawan
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| |
Collapse
|
5
|
Su J, Zhang X, Kan Q, Chu X. Antioxidant Activity of Acanthopanax senticosus Flavonoids in H2O2-Induced RAW 264.7 Cells and DSS-Induced Colitis in Mice. Molecules 2022; 27:molecules27092872. [PMID: 35566218 PMCID: PMC9101407 DOI: 10.3390/molecules27092872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
The redox reaction is a normal process of biological metabolism in the body that leads to the production of free radicals. Under conditions such as pathogenic infection, stress, and drug exposure, free radicals can exceed normal levels, causing protein denaturation, DNA damage, and the oxidation of the cell membrane, which, in turn, causes inflammation. Acanthopanax senticosus (A. senticosus) flavonoids are the main bioactive ingredients with antioxidant function. H2O2-treated RAW 264.7 cells and DSS-induced colitis in mice were used to evaluate the antioxidant properties of A. senticosus flavonoids. The results show that A. senticosus flavonoids can significantly downregulate the levels of ROS and MDA in H2O2-treated RAW 264.7 cells and increase the levels of CAT, SOD, and GPx. A. senticosus flavonoids can also increase the body weights of DSS-induced colitis mice, increase the DAI index, and ameliorate the shortening of the colon. ELISA experiments confirmed that A. senticosus flavonoids could reduce the level of MDA in the mouse serum and increase the levels of SOD, CAT, and GPx. Histopathology showed that the tissue pathological changes in the A. senticosus flavonoid group were significantly lower than those in the DSS group. The Western blot experiments showed that the antioxidant capacity of A. senticosus flavonoids was accomplished through the Nrf2 pathway. In conclusion, A. senticosus flavonoids can relieve oxidative stress in vivo and in vitro and protect cells or tissues from oxidative damage.
Collapse
Affiliation(s)
- Jianqing Su
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| | | | | | - Xiuling Chu
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| |
Collapse
|