1
|
Cai R, Liu J, Wang X, An T, Zhang L. Identification of daurisoline metabolites in rats via the UHPLC-Q-exactive orbitrap mass spectrometer. J Pharm Biomed Anal 2025; 252:116482. [PMID: 39321490 DOI: 10.1016/j.jpba.2024.116482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Daurisoline, a bisbenzylisoquinoline alkaloid extracted from the rhizomes of Menispermum dauricum, exhibits diverse biological activities, encompassing antiplatelet, anti-inflammatory, neuroprotective, and antitumor properties. However, previous investigations have not comprehensively elucidated the metabolic profile and pathways of daurisoline in vivo. Using Ultra-High-Performance Liquid Chromatography with Q-Exactive Orbitrap Mass Spectrometry technology, we comprehensively investigated the metabolites of daurisoline in Sprague-Dawley rats, following intragastric administration. Data collection and analysis were enhanced through Full Scan MS/dd-MS2, in conjunction with parallel reaction monitoring, extracted ion chromatography, and diagnostic fragment ions. Sixty-three metabolites were detected and characterized, including sixty-two novel metabolites and coclaurine. This investigation elucidated the cleavage patterns and tissue distribution characteristics of the metabolism of daurisoline. Furthermore, in vivo reactions, including dehydrogenation, hydroxylation, methylation, sulfation and glucuronidation, were thoroughly examined. Investigating the metabolites of daurisoline in rats has deepened our understanding of its metabolism in vivo, aiding in elucidating its metabolic and pharmacological actions. This provides a valuable foundation for further research into its therapeutic efficacy.
Collapse
Affiliation(s)
- Ruijun Cai
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China
| | - Jing Liu
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China
| | - Xuefang Wang
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China
| | - Tao An
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China
| | - Ling Zhang
- Department of Pharmacy, Shanghai General Hospital Jiuquan Hospital (The People's Hospital of Jiuquan), Jiuquan, GanSu 735000, China.
| |
Collapse
|
2
|
Li H, Li K, Cheng W, Liu M, Wen L, Zhang Z, Zhang W, Su J, Cai W. Rapid Characterization of the Potential Active of Sinomenine in Rats by Ultra-High-Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap Mass Spectrometry and Molecular Docking. J Sep Sci 2024; 47:e202400486. [PMID: 39375918 DOI: 10.1002/jssc.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Sinomenium acutum (Thunb.) Rehd. et Wils is widely used in the treatment of rheumatoid arthritis, with its alkaloid compound sinomenine (SIN) being renowned for its significant anti-inflammatory properties. However, despite its widespread application, the in vivo anti-inflammatory mechanisms and metabolic pathways of SIN remain incompletely understood. This study established a rapid and reliable method based on an ultra-high-performance liquid chromatography method coupled with Quadrupole-Exactive Orbitrap mass spectrometry and molecular docking to identify and characterize SIN and 69 metabolites in rat plasma, urine, and feces, revealing primary metabolic pathways of hydroxylation, demethylation, sulfation, and glucuronidation. Molecular docking results revealed that phase I reactions, including dedimethylation, demethylation, dehydrogenation, and dihydroxylation, along with their composite reactions, were pivotal in influencing SIN's in vivo anti-inflammatory activity. M28, M36, and M59 are potentially the most anti-inflammatory active metabolites of SIN in vivo. This comprehensive analysis unveils SIN's metabolic pathways, offering insights into its biological processes and suggesting a novel approach for exploring active drug constituents. These findings pave the way for further understanding SIN's anti-inflammatory mechanisms, contributing significantly to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Haixia Li
- College Pharmacy, Jiamusi University, Jiamusi, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - KaiLin Li
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Wenhui Cheng
- College Pharmacy, Jiamusi University, Jiamusi, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Mingjuan Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Linwen Wen
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Zexu Zhang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Wendan Zhang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jin Su
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Wei Cai
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
3
|
Yang J, Xiao S, Li L, Zhu A, Xiao W, Wang Q. Actin Dysregulation Mediates Nephrotoxicity of Cassiae Semen Aqueous Extracts. TOXICS 2024; 12:556. [PMID: 39195658 PMCID: PMC11360101 DOI: 10.3390/toxics12080556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Cassiae semen, commonly consumed as roasted tea, has been widely used for both medicinal purposes and dietary supplements. In this study, we investigated the nephrotoxic effects and underlying mechanisms of Cassiae semen aqueous extracts (CSAEs) using computational and animal models. Both male and female Sprague Dawley rats were treated with 4.73-47.30 g/kg (body weight) of CSAEs by oral gavage twice a day for 7-28 days. We found that serum and urinary biomarkers of kidney injury and kidney coefficients were increased in a dose-dependent manner, and were accompanied by morphological alterations in the kidneys of CSAEs-treated rats. Computational and molecular docking approaches predicted that the three most abundant components of CSAEs-obtusifolin, aurantio-obtusin, and obtusin-exhibited strong affinity for the binding of F-actin, ROCK1, and Rac1, and the RhoA-ROCK pathway was identified as the most likely regulatory mechanism mediating the nephrotoxicity of CSAEs. Consistently, immunofluorescence staining revealed F-actin and cytoskeleton were frequently disturbed in renal cells and brush borders at high doses of CSAEs. Results from gene expression analyses confirmed that CSAEs suppressed the key proteins in the RhoA-ROCK signaling pathway and consequently the expression of F-actin and its stabilization genes. In summary, our findings suggest that Cassiae semen can depolymerize and destabilize actin cytoskeleton by inhibition of the RhoA-ROCK pathway and/or direct binding to F-actin, leading to nephrotoxicity. The consumption of Cassiae semen as a supplement and medicine warrants attention.
Collapse
Affiliation(s)
- Jinlan Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Sheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
- Key Laboratory of State Administration of Traditional Chinese Medicine (TCM) for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Zhang L, Qin S, Tang S, E S, Li K, Li J, Cai W, Sun L, Li H. Qualitative Analysis of Multiple Phytochemical Compounds in Tojapride Based on UHPLC Q-Exactive Orbitrap Mass Spectrometry. Molecules 2022; 27:6639. [PMID: 36235176 PMCID: PMC9571116 DOI: 10.3390/molecules27196639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Tojapride is composed of Caulis Perillae, Rhizoma Cyperi, Radix Glycyrrhizae, Citrus aurantium L., Coptis chinensis Franch, Pericarpium Citri Reticulatae, Reynoutria japonica Houtt, Tetradium ruticarpum, and Cleistocactus sepium. It has the effects of inhibiting gastric acid and relieving pain. It is clinically used for treating gastroesophageal reflux disease. To further study the pharmacodynamic properties of Tojapride, the systematic characterization of the chemical constituents in Tojapride was investigated using ultra-performance liquid chromatography with Q-Exactive Orbitrap mass spectrometry combined with parallel reaction monitoring for the first time. Eventually, a total of 222 compounds, including flavonoids, alkaloids, and glycyrrhizic acid derivatives, were identified based on the chromatographic retention times, MS/MS2 information, and bibliography data; a total of 218 of these were reported for the first time as being present in Tojapride. This newly developed approach provides a powerful tool for extending our understanding of chemical constituents of Tojapride, which can be further extended to other TCMP composition research.
Collapse
Affiliation(s)
- Liying Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Shihan Qin
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuai E
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Jing Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Lei Sun
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Hui Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
5
|
An online stepwise background subtraction-based ultra-high pressure liquid chromatography quadrupole time of flight tandem mass spectrometry dynamic detection integrated with metabolic molecular network strategy for intelligent characterization of the absorbed chemical-fingerprint of QiangHuoShengShi decoction in vivo. J Chromatogr A 2022; 1675:463172. [DOI: 10.1016/j.chroma.2022.463172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/31/2023]
|