1
|
Eslami S, Hosseinzadeh Shakib N, Fooladfar Z, Nasrollahian S, Baghaei S, Mosaddad SA, Motamedifar M. The role of periodontitis-associated bacteria in Alzheimer's disease: A narrative review. J Basic Microbiol 2023; 63:1059-1072. [PMID: 37311215 DOI: 10.1002/jobm.202300250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease causes memory loss and dementia in older adults through a neurodegenerative mechanism. Despite the pathophysiological clarification of this cognitive disorder, novel molecular and cellular pathways should be identified to determine its exact mechanism. Alzheimer's disease (AD) is pathologically characterized by senile plaques comprising beta-amyloid and neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau as a microtubule-associated protein with a key role in the pathogenesis of AD. Periodontitis through inflammatory pathways is a risk factor for deteriorating cognitive impairment in AD patients. Poor oral hygiene coupled with immunocompromised status in older adults causes periodontal diseases and chronic inflammations through an oral bacterial imbalance. Toxic bacterial products, including bacteria themselves, can reach the central nervous system through the bloodstream and evoke inflammatory responses. The present review was conducted to investigate relationships between AD and periodontitis-involved bacteria as a risk factor.
Collapse
Affiliation(s)
- Saba Eslami
- Research Central Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Fooladfar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Nasrollahian
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Baghaei
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Motamedifar
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Dorsareh F, Vahid-Dastjerdi G, Bouyahya A, Zarshenas MM, Rezaie M, Yang WM, Amiri-Ardekani E. Topical Licorice for Aphthous: A Systematic Review of Clinical Trials. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:437-447. [PMID: 37786470 PMCID: PMC10541548 DOI: 10.30476/ijms.2022.94467.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/06/2022] [Accepted: 06/25/2022] [Indexed: 10/04/2023]
Abstract
Background Recurrent aphthous stomatitis (RAS) is the most common ulcerative disease that affects oral mucosa. The coating agents, topical analgesics, and topical steroids are usually used as treatment methods. Glycyrrhiza glabra has been used for RAS treatment based on its anti-inflammatory, antioxidant, and immunomodulatory properties. In this study, a systemic review on the therapeutic effect of topical licorice on RAS management was performed. Methods Science Direct, Scopus, Cochrane databases, PubMed Google Scholar, and ResearchGate were searched up to September 2021 to find all English randomized clinical trials studying the effect of G. glabra, or its compositions on RAS. Meta-analysis was not conducted because of data heterogeneity. Articles were reviewed qualitatively, and only those with a Jadad score ≥3 were included. Animal studies, in vitro, review papers, non-English papers, and case reports were excluded. Results Six studies with 314 subjects were included after screening. The result showed licorice has significant effects on RAS pain reduction, ulcer size, and healing time. Its effectiveness is related to its dose-dependent anti-inflammatory and antioxidant effects through several mechanisms. It also has antibacterial effects against Streptococci mutans and Porphyromonas gingivalis as another mechanism of action in RAS treatment. In addition, licorice can elevate the epidermal growth factor (EGF) level compared to the control group, which has an essential role in oral mucosal tissue integrity. Conclusion Licorice extract has been used in different dosage forms, including paste, patch, and mouthwash with concentrations of 1% or 5%. The healing time after licorice therapy is expected to be within 4-8 days. Licorice did not show any adverse effect in the intervention groups, indicating its effectiveness and safety in RAS treatment.
Collapse
Affiliation(s)
- Fereshteh Dorsareh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Scientific Association of Indigenous Knowledge, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gita Vahid-Dastjerdi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Scientific Association of Indigenous Knowledge, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammad Mehdi Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mostafa Rezaie
- Department of Oral and Maxillofacial Medicine, School Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ehsan Amiri-Ardekani
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Khayatan D, Hussain A, Tebyaniyan H. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet Med Sci 2023. [PMID: 37196179 DOI: 10.1002/vms3.1161] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Cancer is a leading cause of death worldwide, but advances in treatment, early detection, and prevention have helped to reduce its impact. To translate cancer research findings into clinical interventions for patients, appropriate animal experimental models, particularly in oral cancer therapy, can be helpful. In vitro experiments using animal or human cells can provide insight into cancer's biochemical pathways. This review discusses the various animal models used in recent years for research and clinical intervention in oral cancer, along with their advantages and disadvantages. We highlight the advantages and limitations of the used animal models in oral cancer research and therapy by searching the terms of animal models, oral cancer, oral cancer therapy, oral cancer research, and animals to find all relevant publications during 2010-2023. Mouse models, widely used in cancer research, can help us understand protein and gene functions in vivo and molecular pathways more deeply. To induce cancer in rodents, xenografts are often used, but companion animals with spontaneous tumours are underutilized for rapid advancement in human and veterinary cancer treatments. Like humans with cancer, companion animals exhibit biological behaviour, treatment responses, and cytotoxic agent responses similar to humans. In companion animal models, disease progression is more rapid, and the animals have a shorter lifespan. Animal models allow researchers to study how immune cells interact with cancer cells and how they can be targeted specifically. Additionally, animal models have been extensively used in research on oral cancers, so researchers can use existing knowledge and tools to better understand oral cancers using animal models.
Collapse
Affiliation(s)
- Danial Khayatan
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy (ECHA), University of Alberta, Edmonton, Canada
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
4
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Solé S, Becerra S, Carvajal C, Bettolli P, Letelier H, Santini A, Vargas L, Cifuentes A, Larsen F, Jara N, Oyarzún J, Bustamante E, Martínez B, Rosenberg D, Galván T. Clinical relevance of the use of Dentoxol ® for oral mucositis induced by radiotherapy: A phase II clinical trial. World J Clin Oncol 2022; 13:813-821. [PMID: 36337310 PMCID: PMC9630999 DOI: 10.5306/wjco.v13.i10.813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/22/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe oral mucositis associated with cancer therapy is a frequent complication that may affect a patient's systemic condition, resulting in interruption and/or prolongation of cancer therapy. Dentoxol® is a medical solution in the form of a mouthwash that has been shown to result in statistically significant improvement in the prevention of severe oral mucositis. However, knowing the measures of the clinical significance of this therapy is important for accurate decision-making.
AIM To describe the clinical impact of Dentoxol® use in severe oral mucositis.
METHODS Clinical significance was measured using the results obtained in a randomized controlled clinical trial previously conducted by the same group of researchers. The measures of clinical significance evaluated were the absolute risk or incidence, relative risk, absolute risk reduction, relative risk reduction, number needed to treat, and odds ratio.
RESULTS The data obtained show that the impact of Dentoxol® on reducing the severity of oral mucositis has important clinical relevance.
CONCLUSION The results of this study justify the incorporation of Dentoxol® mouth rinse into clinical protocols as a complement to cancer therapy to prevent and/or treat oral mucositis secondary to radiotherapy.
Collapse
Affiliation(s)
- Sebastián Solé
- Department of Radiotherapy, Radiomedicine Institute, Américo Vespucio Norte 1314 Vitacura, 7630370, Santiago, Chile
| | - Sergio Becerra
- National Institute of Cancer, Santiago, Servicio de Salud Metropolitano Norte, Av Profesor Zañartu 1010, Independencia, 8380455, Santiago, Chile
| | - Claudia Carvajal
- National Institute of Cancer, Santiago, Servicio de Salud Metropolitano Norte, Av Profesor Zañartu 1010, Independencia, 8380455, Santiago, Chile
| | - Piero Bettolli
- Oncologic Institute Arturo López Pérez Foundation, José Manuel Infante 805, Providencia, 7500691, Santiago, Chile
| | - Hernán Letelier
- Hospital Base Valdivia, Bueras 1003 s/n XIV Región, 5100238, Valdivia, Chile
| | - Alejandro Santini
- Oncologic Center of Antofagasta, Los Pumas 10255, Antofagasta, 1267348, Antofagasta, Chile
| | - Lorena Vargas
- Department of Radiotherapy, Radiomedicine Institute, Américo Vespucio Norte 1314 Vitacura, 7630370, Santiago, Chile
| | - Alexander Cifuentes
- National Institute of Cancer, Santiago, Servicio de Salud Metropolitano Norte, Av Profesor Zañartu 1010, Independencia, 8380455, Santiago, Chile
| | - Francisco Larsen
- Department of Radiotherapy, Radiomedicine Institute, Américo Vespucio Norte 1314 Vitacura, 7630370, Santiago, Chile
| | - Natalia Jara
- Department of Radiotherapy, Radiomedicine Institute, Américo Vespucio Norte 1314 Vitacura, 7630370, Santiago, Chile
| | - Jorge Oyarzún
- Hospital Base Valdivia, Bueras 1003 s/n XIV Región, 5100238, Valdivia, Chile
| | - Eva Bustamante
- Oncologic Institute Arturo López Pérez Foundation, José Manuel Infante 805, Providencia, 7500691, Santiago, Chile
| | - Benjamín Martínez
- Universidad Mayor, Santiago, Av Libertador Bernardo O´Higgins 2013, 8340585, Santiago, Chile
| | - David Rosenberg
- Ingalfarma, Dr Manuel Barros Borgoño 71, Oficina 1308, Providencia, 7500593, Santiago, Chile
| | - Tomas Galván
- Ingalfarma, Dr Manuel Barros Borgoño 71, Oficina 1308, Providencia, 7500593, Santiago, Chile
| |
Collapse
|
6
|
Syed MA, Hanif S, Ain NU, Syed HK, Zahoor AF, Khan IU, Abualsunun WA, Jali AM, Qahl SH, Sultan MH, Madkhali OA, Ahmed RA, Abbas N, Hussain A, Qayyum MA, Irfan M. Assessment of Binary Agarose-Carbopol Buccal Gels for Mucoadhesive Drug Delivery: Ex Vivo and In Vivo Characterization. Molecules 2022; 27:7004. [PMID: 36296596 PMCID: PMC9608223 DOI: 10.3390/molecules27207004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Agarose (AG) is a naturally occurring biocompatible marine seaweed extract that is converted to hydrocolloid gel in hot water with notable gel strength. Currently, its mucoadhesion properties have not been fully explored. Therefore, the main aim of this study was to evaluate the mucoadhesive potential of AG binary dispersions in combination with Carbopol 934P (CP) as mucoadhesive gel preparations. The gels fabricated via homogenization were evaluated for ex vivo mucoadhesion, swelling index (SI), dissolution and stability studies. The mucoadhesive properties of AG were concentration dependent and it was improved by the addition of CP. Maximum mucoadhesive strength (MS) (27.03 g), mucoadhesive flow time (FT) (192.2 min), mucoadhesive time in volunteers (MT) (203.2 min) and SI (23.6% at 4 h) were observed with formulation F9. The mucoadhesive time investigated in volunteers (MT) was influenced by AG concentration and was greater than corresponding FT values. Formulations containing 0.3%, w/v AG (F3 and F9) were able to sustain the release (~99%) for both drugs till 3 h. The optimized formulation (F9) did not evoke any inflammation, irritation or pain in the buccal cavity of healthy volunteers and was also stable up to 6 months. Therefore, AG could be considered a natural and potential polymer with profound mucoadhesive properties to deliver drugs through the mucosal route.
Collapse
Affiliation(s)
- Muhammad Ali Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan or
| | - Sana Hanif
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan or
| | - Noor ul Ain
- Department of Medicine, Fatima Jinnah Medical University Lahore, Lahore 54000, Pakistan
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 54590, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Nasir Abbas
- University College of Pharmacy, University of The Punjab, Lahore 38000, Pakistan
| | - Amjad Hussain
- University College of Pharmacy, University of The Punjab, Lahore 38000, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore 5600, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| |
Collapse
|
7
|
Alam M, Abbasi K, Nouri F, Golkar M, Ranjbar R, Yazdanian M, Hosseini ZS, Tahmasebi E, Tebyaniyan H. The Cytotoxicity and Anticancer Effects of Propolis against the Oral Squamous Cell Carcinoma: In Vitro Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background and aim: A wide range of therapeutic properties, including anti-cancer properties, are attributed to propolis, a resinous product obtained from several plants that possess a variety of medicinal properties. A study on honeybee-produced propolis showed that in mice, it showed a significant reduction in the progression of squamous cell carcinoma in the head and neck, but in humans, its role in HNSCC remains unclear.
Method and materials: Propolis was sampled from two types of Iranian. Extraction was done using ethanolic extracts of propolis. The cll viability was evaluated by MTT assay. Cancer cell lines were assessed for gene expression, such as mmp-2, mmp-9, bax, and bcl-2.
Results: Increased sample concentrations reduced cell viability but did not cause significant cytotoxicity. A RT-PCR indicated that the Khalkhal sample produced more effects among the two samples, and the level of bax mRNA gene expression in the Khalkhal sample was increased. With an increasing concentration of Khalkhal samples, the expression increased. Increasing Khalkhal sample concentration also reduced mRNA levels of bcl-2, mmp-2, and mmp-9.
Conclusion: Khalkhal’s propolis can be considered a suitable sample for the study of antiapoptotic and proapoptotic gene expression. Additionally, it can be used as a potential candidate for inhibiting the proliferation and spread of oral cancer cells.
Collapse
|