1
|
Caro-Osorio E, Perez-Ruano LA, Figueroa Sanchez JA. Concordance of Extent of Resection Between Intraoperative Ultrasound and Postoperative MRI in Brain and Spine Tumor Resection. Cureus 2024; 16:e74101. [PMID: 39712672 PMCID: PMC11661696 DOI: 10.7759/cureus.74101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Objective Evaluate the utility of intraoperative ultrasound (IOUS) in brain and spinal tumor resections and the concordance of the extent of resection between IOUS and postoperative magnetic resonance imaging (MRI). Methods A retrospective analysis of prospectively collected data was performed. Thirty-nine lesions (36 patients) in the brain and spine were operated on for resection using IOUS between May 2020 and December 2022. All patients who underwent brain or spinal tumor resection were included, and who underwent IOUS during tumor resection and postoperative MRI was done within 48 hours of surgery. The Cohen's kappa coefficient was performed to the concordance of resection by IOUS and postoperative MRI. Results Forty-one patients underwent surgery, of which 36 met the inclusion criteria and five were excluded due to incomplete clinical records. Of the 36 patients included, two presented lesions in different locations, one with frontal and parietal metastases and the other with extradural and intradural spinal lesions, and one patient had a recurrence of glioblastoma, for which 39 procedures were included. Of the 36 patients, 36% were women, and the average age was 51.4 years with an age range of one year and two months to 94 years. The concordance of the degree of resection by ultrasound and the degree of resection by postoperative magnetic resonance is high. Conclusions The higher degree of concordance between IOUS and postoperative MRI would suggest that IOUS is a reliable tool for assessing the extent of tumor resection during surgery and provides real-time information to make decisions to adjust surgery plans based on the benefit/risk ratio.
Collapse
|
2
|
Zhou J, Wu Y, Qin H, Wang S, Feng D, Yang D. Approach to a cerebral hernia caused by an intratumoral hemorrhage of a cystic oligodendroglioma: a case report. Front Oncol 2024; 14:1295483. [PMID: 38634059 PMCID: PMC11021664 DOI: 10.3389/fonc.2024.1295483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
The incidence of cerebral herniation caused by intratumoral hemorrhage (ITH) in cystic oligodendroglioma (COD) is exceedingly rare. This study presents a case of cerebral herniation subsequent to cystic oligodendroglioma (COD) and sudden intratumoral hemorrhage. Following initial emergency treatment and evaluation, we successfully circumvented the solid component of the tumor and proceeded with cystic puncture and external drainage to prevent the incidence of brain herniation and mitigate the severity of associated symptoms. Based on preoperative examination results, the cystic glioma was successfully resected, and the patient experienced an uneventful recovery. According to the pathological findings, the oligodendroglioma was classified as World Health Organization (WHO) grade III. The treatment efficacy was comparable to cases of the same pathological grade, in which neither intratumoral hemorrhage nor cerebral hernia was observed.
Collapse
Affiliation(s)
- Jiahua Zhou
- Department of Neurosurgery, Tangdu hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yingxi Wu
- Department of Neurosurgery, Tangdu hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Huaizhou Qin
- Department of Neurosurgery, Tangdu hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Shoujie Wang
- Department of Neurosurgery, Tangdu hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Di Yang
- Department of Radiology, Tangdu hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Al-Adli NN, Young JS, Scotford K, Sibih YE, Payne J, Berger MS. Advances in Intraoperative Glioma Tissue Sampling and Infiltration Assessment. Brain Sci 2023; 13:1637. [PMID: 38137085 PMCID: PMC10741454 DOI: 10.3390/brainsci13121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Gliomas are infiltrative brain tumors that often involve functional tissue. While maximal safe resection is critical for maximizing survival, this is challenged by the difficult intraoperative discrimination between tumor-infiltrated and normal structures. Surgical expertise is essential for identifying safe margins, and while the intraoperative pathological review of frozen tissue is possible, this is a time-consuming task. Advances in intraoperative stimulation mapping have aided surgeons in identifying functional structures and, as such, has become the gold standard for this purpose. However, intraoperative margin assessment lacks a similar consensus. Nonetheless, recent advances in intraoperative imaging techniques and tissue examination methods have demonstrated promise for the accurate and efficient assessment of tumor infiltration and margin delineation within the operating room, respectively. In this review, we describe these innovative technologies that neurosurgeons should be aware of.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| | - Katie Scotford
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| | - Youssef E. Sibih
- School of Medicine, University of California San Francisco, San Francisco, CA 94131, USA;
| | - Jessica Payne
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| | - Mitchel S. Berger
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| |
Collapse
|
4
|
Wei R, Chen H, Cai Y, Chen J. Application of intraoperative ultrasound in the resection of high-grade gliomas. Front Neurol 2023; 14:1240150. [PMID: 37965171 PMCID: PMC10640994 DOI: 10.3389/fneur.2023.1240150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
The incidence of gliomas is approximately 3-5/100,000, with high-grade gliomas accounting for approximately 30-40% of these tumors. Surgery is a confirmed positive factor in prolonging the survival of these patients, and a larger resection range means a longer survival time. Therefore, surgery for high-grade glioma patients should aim to maximize the extent of resection while preserving neurological function to achieve a better quality of life. There is consensus regarding the need to lengthen progression-free survival (PFS) and overall survival (OS) times. In glioma surgery, methods such as intraoperative computed tomography (ICT), intraoperative magnetic resonance imaging (IMRI), navigation, 5-aminolevulinic acid (5-ALA), and intraoperative ultrasound (IOUS) are used to achieve an expanded resection during the surgical procedure. IOUS has been increasingly used in the surgery of high-grade gliomas and various tumors due to its convenient intraoperative use, its flexible repeatability, and the relatively low cost of operating room construction. With the continuous upgrading of ultrasound equipment, IOUS has been able to better assist surgeons in achieving an increased extent of resection. This review aims to summarize the application of ultrasound in the surgery of high-grade gliomas in the past decade, its improvement in patient prognosis, and its prospects.
Collapse
Affiliation(s)
- RenJie Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - YuXiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JingCao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Al-Adli NN, Young JS, Sibih YE, Berger MS. Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers (Basel) 2023; 15:cancers15072173. [PMID: 37046834 PMCID: PMC10093517 DOI: 10.3390/cancers15072173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Gliomas are infiltrative primary brain tumors that often invade functional cortical and subcortical regions, and they mandate individualized brain mapping strategies to avoid postoperative neurological deficits. It is well known that maximal safe resection significantly improves survival, while postoperative deficits minimize the benefits associated with aggressive resections and diminish patients’ quality of life. Although non-invasive imaging tools serve as useful adjuncts, intraoperative stimulation mapping (ISM) is the gold standard for identifying functional cortical and subcortical regions and minimizing morbidity during these challenging resections. Current mapping methods rely on the use of low-frequency and high-frequency stimulation, delivered with monopolar or bipolar probes either directly to the cortical surface or to the subcortical white matter structures. Stimulation effects can be monitored through patient responses during awake mapping procedures and/or with motor-evoked and somatosensory-evoked potentials in patients who are asleep. Depending on the patient’s preoperative status and tumor location and size, neurosurgeons may choose to employ these mapping methods during awake or asleep craniotomies, both of which have their own benefits and challenges. Regardless of which method is used, the goal of intraoperative stimulation is to identify areas of non-functional tissue that can be safely removed to facilitate an approach trajectory to the equator, or center, of the tumor. Recent technological advances have improved ISM’s utility in identifying subcortical structures and minimized the seizure risk associated with cortical stimulation. In this review, we summarize the salient technical aspects of which neurosurgeons should be aware in order to implement intraoperative stimulation mapping effectively and safely during glioma surgery.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| | - Youssef E. Sibih
- School of Medicine, University of California, San Francisco, CA 94131, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| |
Collapse
|
6
|
Yang Z, Zhao C, Zong S, Piao J, Zhao Y, Chen X. A review on surgical treatment options in gliomas. Front Oncol 2023; 13:1088484. [PMID: 37007123 PMCID: PMC10061125 DOI: 10.3389/fonc.2023.1088484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Gliomas are one of the most common primary central nervous system tumors, and surgical treatment remains the principal role in the management of any grade of gliomas. In this study, based on the introduction of gliomas, we review the novel surgical techniques and technologies in support of the extent of resection to achieve long-term disease control and summarize the findings on how to keep the balance between cytoreduction and neurological morbidity from a list of literature searched. With modern neurosurgical techniques, gliomas resection can be safely performed with low morbidity and extraordinary long-term functional outcomes.
Collapse
Affiliation(s)
- Zhongxi Yang
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Chen Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Shan Zong
- Department of Gynecology Oncology, The First Hospital of Jilin University, Jilin, China
| | - Jianmin Piao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- *Correspondence: Xuan Chen,
| |
Collapse
|
7
|
Han B, Zhang L, Jia W. Contrast-Enhanced Ultrasound in Resection of Spinal Cord Gliomas. World Neurosurg 2023; 171:e83-e92. [PMID: 36427693 DOI: 10.1016/j.wneu.2022.11.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Intraoperative contrast-enhanced ultrasound (iCEUS) is a relatively new technique for visualizing brain gliomas and can help achieve maximum resection, but its potential in evaluation of spinal cord gliomas has not been well defined. The aim of this study was to describe the iCEUS characterization of and evaluate its role in visualizing intramedullary gliomas. METHODS A retrospective review of patients who underwent intramedullary glioma resection with iCEUS guidance from 2019 to 2021 was conducted. An offline analysis was performed to compare and characterize the perfusion features of each glioma. RESULTS This study included 36 patients who underwent iCEUS for spinal cord gliomas. iCEUS was performed successfully, and all gliomas were clearly identified. The distribution of contrast agent showed different dynamic phases (arterial, peak, and washout) from those observed in brain gliomas, generally appearing slower and less intense in spinal cord gliomas. iCEUS helped highlight intramedullary gliomas, each of which demonstrated specific iCEUS features depending on the grade. Gross total resection was achieved in 20 patients (55.6%), subtotal resection was achieved in 11 patients (30.6%), and partial resection was achieved in 5 patients (13.8%). CONCLUSIONS ICEUS adds valuable information in highlighting spinal cord gliomas in real time. It allows the neurosurgeon to assess the anatomical location of the glioma and delineate the tumor margins. iCEUS could play a potentially important role in guiding spinal cord glioma resection. Further study with more cases is needed to better understand the microbubble distribution dynamics in intramedullary gliomas.
Collapse
Affiliation(s)
- Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
De Rosa A, Guizzardi G, Moncada M, Roldán P, Ferrés A, Topczewski TE, Somma T, Cavallo LM, González J, Enseñat J, Di Somma A. Ultrasound-Oriented Surgical Planning ("UOSP") for Intracranial Lesions: A Systematic Integration to the Standard Preoperative Planning. World Neurosurg 2023; 170:e766-e776. [PMID: 36455842 DOI: 10.1016/j.wneu.2022.11.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Intraoperative ultrasound (iUS) is a well-established technique whose aim is to provide real-time visualization of deep lesions during brain surgery. The lack of definition of anatomic semeiotics and the unusual direction of the insonation plane make interpretation and orientation challenging for the surgeon who newly approaches to such a tool. We propose a novel protocol to be applied during the surgical planning for intracranial lesions surgery, a so-called ultrasound-oriented surgical planning ("UOSP") protocol, and we provide a retrospective analysis of 21 patients who underwent surgery for an intracranial lesion in which UOSP was applied. To further enlighten different surgical orientation strategies and possible limitations given by the technique, we discuss 3 illustrative cases assigned to 3 categories ("basic," "intermediate," and "challenging" lesions) with progressively growing difficulty in anatomic orientation during a surgical procedure. METHODS A total of 21 patients operated between March 2021 and July 2021 and where the UOSP protocol was applied during surgical planning were evaluated retrospectively. The UOSP protocol was performed the days before the surgical intervention by the same surgical team. RESULTS The UOSP protocol was successfully applied in all 21 patients. In all cases, the preoperative imaging obtained during surgical planning corresponded to the images observed during the application of iUS. CONCLUSIONS The introduction of the UOSP protocol during the planification of the surgical intervention for an intracerebral lesion may serve as a key factor to overcome the actual limitations inherent to the iUS technique. Utilization of this protocol may facilitate wider use of iUS in neurosurgery.
Collapse
Affiliation(s)
- Andrea De Rosa
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli "Federico II," Naples, Italy
| | | | - Marina Moncada
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Pedro Roldán
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Luigi Maria Cavallo
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Josep González
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Joaquim Enseñat
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain.
| | | |
Collapse
|
9
|
Wang M, Yu J, Zhang J, Pan Z, Chen J. Intraoperative ultrasound in recurrent gliomas surgery: Impact on residual tumor volume and patient outcomes. Front Oncol 2023; 13:1161496. [PMID: 37035181 PMCID: PMC10076842 DOI: 10.3389/fonc.2023.1161496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Background Reoperation may be beneficial for patients with recurrent gliomas. Minimizing the residual tumor volume (RTV) while ensuring the functionality of relevant structures is the goal of the reoperation of recurrent gliomas. Intraoperative ultrasound (IoUS) may be helpful for intraoperative tumor localization, intraoperative real-time imaging to guide surgical resection, and postoperative evaluation of the RTV in the reoperation for recurrent gliomas. Objective To assess the effect of real-time ioUS on minimizing RTV in recurrent glioma surgery compared to Non-ioUS. Methods We retrospectively analyzed the data from 92 patients who had recurrent glioma surgical resection: 45 were resected with ioUS guidance and 47 were resected without ioUS guidance. RTV, Karnofsky Performance Status (KPS) at 6 months after the operation, the number of recurrent patients, and the time to recurrence were evaluated. Results The average RTV in the ioUS group was significantly less than the Non-ioUS group (0.27 cm3 vs. 1.33 cm3, p = 0.0004). Patients in the ioUS group tended to have higher KPS scores at 6 months of follow-up after the operation than those in the Non-ioUS group (70.00 vs. 60.00, p = 0.0185). More patients in the Non-ioUS group experienced a recurrence than in the ioUS group (43 (91.49%) vs. 32 (71.11%), p = 0.0118). The ioUS group had a longer mean time to recurrence than the Non-ioUS group (7.9 vs. 6.3 months, p = 0.0013). Conclusion The use of ioUS-based real-time for resection of recurrent gliomas has been beneficial in terms of both RTV and postoperative outcomes, compared to the Non-ioUS group.
Collapse
Affiliation(s)
- Meiyao Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jibo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiyong Pan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jincao Chen,
| |
Collapse
|
10
|
Rosenstock T, Pöser P, Wasilewski D, Bauknecht HC, Grittner U, Picht T, Misch M, Onken JS, Vajkoczy P. MRI-Based Risk Assessment for Incomplete Resection of Brain Metastases. Front Oncol 2022; 12:873175. [PMID: 35651793 PMCID: PMC9149256 DOI: 10.3389/fonc.2022.873175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Object Recent studies demonstrated that gross total resection of brain metastases cannot always be achieved. Subtotal resection (STR) can result in an early recurrence and might affect patient survival. We initiated a prospective observational study to establish a MRI-based risk assessment for incomplete resection of brain metastases. Methods All patients in whom ≥1 brain metastasis was resected were prospectively included in this study (DRKS ID: DRKS00021224; Nov 2020 - Nov 2021). An interdisciplinary board of neurosurgeons and neuroradiologists evaluated the pre- and postoperative MRI (≤48h after surgery) for residual tumor. Extensive neuroradiological analyses were performed to identify risk factors for an unintended STR which were integrated into a regression tree analysis to determine the patients' individual risk for a STR. Results We included 150 patients (74 female; mean age: 61 years), in whom 165 brain metastases were resected. A STR was detected in 32 cases (19.4%) (median residual tumor volume: 1.36ml, median EORrel: 93.6%), of which 6 (3.6%) were intended STR (median residual tumor volume: 3.27ml, median EORrel: 67.3%) - mainly due to motor-eloquent location - and 26 (15.8%) were unintended STR (uSTR) (median residual tumor volume: 0.64ml, median EORrel: 94.7%). The following risk factors for an uSTR could be identified: subcortical metastasis ≥5mm distant from cortex, diffuse contrast agent enhancement, proximity to the ventricles, contact to falx/tentorium and non-transcortical approaches. Regression tree analysis revealed that the individual risk for an uSTR was mainly associated to the distance from the cortex (distance ≥5mm vs. <5mm: OR 8.0; 95%CI: 2.7 - 24.4) and the contrast agent patterns (diffuse vs. non-diffuse in those with distance ≥5mm: OR: 4.2; 95%CI: 1.3 - 13.7). The preoperative tumor volume was not substantially associated with the extent of resection. Conclusions Subcortical metastases ≥5mm distant from cortex with diffuse contrast agent enhancement showed the highest incidence of uSTR. The proposed MRI-based assessment allows estimation of the individual risk for uSTR and can help indicating intraoperative imaging.
Collapse
Affiliation(s)
- Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Paul Pöser
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Wasilewski
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hans-Christian Bauknecht
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin, Germany
| | - Martin Misch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julia Sophie Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
11
|
Wang F, Dong L, Liang S, Wei X, Wang Y, Chang L, Guo K, Wu H, Chang Y, Yin Y, Wang L, Shi Y, Yan F, Li N. Ultrasound-triggered drug delivery for glioma therapy through gambogic acid-loaded nanobubble-microbubble complexes. Biomed Pharmacother 2022; 150:113042. [PMID: 35658212 DOI: 10.1016/j.biopha.2022.113042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022] Open
Abstract
Glioma is one of the most common primary brain tumors. Gambogic acid (GA) is widely used in tumor chemotherapy. However, GA has poor water solubility, low bioavailability, and difficult permeability across the blood-brain barrier (BBB), leading to poor efficacy against brain tumors. In our study, we developed negatively charged GA-loaded PLGA nanobubbles [GA/poly(lactic-co-glycolic acid) (PLGA)] and conjugated them onto the surface of cationic lipid microbubbles (CMBs) through electrostatic interactions. The resulting GA/PLGA-CMB complex was characterized for its particle size, distribution, drug encapsulation efficiency, and ultrasound imaging property, revealing a high drug encapsulation efficiency and excellent contrast imaging capability. Importantly, significantly enhanced GA delivery into the brain could be observed after the intravenous administration of GA/PLGA-CMBs combined with low-intensity focused ultrasound (FUS) due to the cavitation from CMBs, which mediated blood-brain barrier (BBB) opening. Taking advantage of the opened BBB, GA/PLGA nanobubbles could be delivered into the tumor. Then, the second FUS irradiation at higher energy was used to induce the cavitation of GA/PLGA nanobubbles, producing the second cavitation on tumor cells, significantly enhancing the ability of GA to enter tumor cells and inhibit tumor growth inhibition efficacy.
Collapse
Affiliation(s)
- Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lei Dong
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Simin Liang
- The Sixth Clinical Medical College, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Xixi Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yongling Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Liansheng Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Kang Guo
- Department of Oncology, The third affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yaling Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lu Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
12
|
Tomaiuolo F, Raffa G, Morelli A, Rizzo V, Germanó A, Petrides M. Sulci and gyri are topological cerebral landmarks in individual subjects: a study of brain navigation during tumor resection. Eur J Neurosci 2022; 55:2037-2046. [PMID: 35441404 PMCID: PMC9321027 DOI: 10.1111/ejn.15668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Surgical resection of brain tumors aims at the maximal safe resection of the pathological tissue with minimal functional impairment. To achieve this objective, reliable anatomical landmarks are indispensable to navigate into the brain. The neuronavigation system can provide information to target the location of the patient's lesion, but after the craniotomy, a brain shift and relaxation mismatch with it often occurs. By contrast, sulci/gyri are topological cerebral landmarks in individual patients and do shift with the brain parenchyma during lesion removal, but remain independent from brain shift in relation to the sulci/gyri. Here we present a case report of a novel strategy based on anatomical landmarks to guide intra-operative brain tumor resection, without using a standard neuronavigation system. A pre-operative brain mapping of the peri-tumoral sulci by the MRI and surface reconstruction was followed by confirmation of the anatomical landmarks for the motor cortex using navigated transcranial magnetic stimulation. The resulting location was used as a seed for diffusion tensor imaging tractography to reconstruct the corticospinal tracts. These selected cortical landmarks (sulci/gyri) delimited the margins of the two lesions and the specific location under which the corticospinal tract courses, thus facilitating monitoring of the peri-tumoral region during brain resection. In this case, 96% of the brain tumor from the peri-central somatomotor region was successfully removed without chronic post-operative motor impairments. This approach is based on cortical anatomy that is fixed during surgery and does not suffer from the brain shift that could misplace the lesion according to the neuronavigation system.
Collapse
Affiliation(s)
- Francesco Tomaiuolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Raffa
- Division of Neurosurgery, Department BIOMORF, University of Messina, Messina, Italy
| | - Adolfo Morelli
- Division of Neurosurgery, Department BIOMORF, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Division of Neurosurgery, Department BIOMORF, University of Messina, Messina, Italy
| | - Antonino Germanó
- Division of Neurosurgery, Department BIOMORF, University of Messina, Messina, Italy
| | - Michael Petrides
- Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, Canada
| |
Collapse
|
13
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|