1
|
Park J, Lee W. The complete mitochondrial genome of Uroleucon erigeronense (Thomas, 1878) (Hemiptera: Aphididae). Mitochondrial DNA B Resour 2022; 7:84-86. [PMID: 34993319 PMCID: PMC8725879 DOI: 10.1080/23802359.2021.2008839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We have sequenced mitochondrial genome of Uroleucon erigeronense (Thomas, 1878) isolated from Erigeron canadensis in Korea. The circular mitogenome of U. erigeronense is 15,691 bp long including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and a single control region of 968 bp. AT ratio is 84.2%. Additional phylogenetic studies of aphid mitogenomes are required due to the inconsistency found in the three phylogenetic trees.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss Inc, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Wonhoon Lee
- Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Park J, Lee J, Park J. The investigation of intraspecific characteristics and comparative analyses of the complete mitochondrial genome of Stegobium paniceum (Linnaeus, 1758) (Coleoptera: Ptinidae) assembled from public NGS raw reads of the black truffle, Tuber melanosporum. Sci Prog 2022; 105:368504211072355. [PMID: 35040745 PMCID: PMC10358573 DOI: 10.1177/00368504211072355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Due to the rapid development of NGS technologies, a huge amount of NGS raw reads have been accumulated in public repositories, such as the Short Read Archive of NCBI. We successfully rescued the complete mitochondrial genome of Stegobium paniceum, a drug store beetle, from public NGS raw reads of truffle generated from the whole genome project. The circular mitogenome of S. paniceum is 15,474 bp long including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and a single large non-coding region of 803 bp. Intraspecific transfer RNAs structure and sequence variations were investigated and simple sequence repeats identified from three S. paniceum mitochondrial genomes were compared showing their diversities as fundamental data to utilize them in various aspects including developing efficient molecular markers in the family, Ptinidae. Phylogenetic analysis of 23 Bostrichoidea mitochondrial genomes presented better species identification based on phylogenetic analyses and the optimal options for constructing phylogenetic trees based on Bostrichoidea mitochondrial genomes. Our results present not only utilization of public NGS raw read sequences but also intraspecific features of S. paniceum mitochondrial genomes and comparative analysis of Bostrichoidea mitochondrial genomes in various aspects.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jungmo Lee
- InfoBoss Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jonghyun Park
- InfoBoss Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
A New Mitochondrial Genome of Sogatella furcifera (Horváth) (Hemiptera: Delphacidae) and Mitogenome-Wide Investigation on Polymorphisms. INSECTS 2021; 12:insects12121066. [PMID: 34940154 PMCID: PMC8706918 DOI: 10.3390/insects12121066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 01/23/2023]
Abstract
Simple Summary We completed one mitogenome of white-backed planthopper (WBPH), Sogatella furcifera (Horváth), with finding heteroplasmy phenomenon confirmed by PCR reaction and Sanger sequencing method. This heteroplasmy was not observed in WBPHs (n = 24) collected from the fields, suggesting that it may be uncommon in fields. We also analyzed single nucleotide polymorphisms, insertion and deletions, and simple sequence repeats among three currently available WBPH mitogenomes of Korea and China, suggesting that identified intraspecific variations could be potential candidates for developing markers to distinguish geographical populations of WBPH including Korean and Chinese. Phylogenetic analysis of 32 mitogenomes of Delphacidae including the three WBPH mitogenomes suggested that Delphacinae seems to be monophyletic and Sogatella species including WBPH are clearly formed as one clade. Abstract White-backed planthopper (WBPH), Sogatella furcifera (Horváth), is one of the major sap-sucking rice pests in East Asia. We have determined a new complete mitochondrial genome of WBPH collected in the Korean peninsula using NGS technology. Its length and GC percentages are 16,613 bp and 23.8%, respectively. We observed one polymorphic site, a non-synonymous change, in the COX3 gene with confirmation heteroplasmy phenomenon within individuals of WBPH by PCR amplification and Sanger sequencing, the first report in this species. In addition, this heteroplasmy was not observed in wild WBPH populations, suggesting that it may be uncommon in fields. We analyzed single nucleotide polymorphisms, insertion, and deletions, and simple sequence repeats among the three WBPH mitogenomes from Korea and China and found diverse intraspecific variations, which could be potential candidates for developing markers to distinguish geographical populations. Phylogenetic analysis of 32 mitogenomes of Delphacidae including the three WBPH mitogenomes suggested that Delphacinae seems to be monophyletic and Sogatella species including WBPH are clearly formed as one clade. In the future, it is expected that complete mitogenomes of individuals of geographically dispersed WBPH populations will be used for further population genetic studies to understand the migration pathway of WBPH.
Collapse
|
4
|
Kim M, Xi H, Park S, Yun Y, Park J. Genome-wide comparative analyses of GATA transcription factors among seven Populus genomes. Sci Rep 2021; 11:16578. [PMID: 34400697 PMCID: PMC8367991 DOI: 10.1038/s41598-021-95940-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17-20CX2C) followed by a basic region. We identified 262 GATA genes (389 GATA TFs) from seven Populus genomes using the pipeline of GATA-TFDB. Alternative splicing forms of Populus GATA genes exhibit dynamics of GATA gene structures including partial or full loss of GATA domain and additional domains. Subfamily III of Populus GATA genes display lack CCT and/or TIFY domains. 21 Populus GATA gene clusters (PCs) were defined in the phylogenetic tree of GATA domains, suggesting the possibility of subfunctionalization and neofunctionalization. Expression analysis of Populus GATA genes identified the five PCs displaying tissue-specific expression, providing the clues of their biological functions. Amino acid patterns of Populus GATA motifs display well conserved manner of Populus GATA genes. The five Populus GATA genes were predicted as membrane-bound GATA TFs. Biased chromosomal distributions of GATA genes of three Populus species. Our comparative analysis approaches of the Populus GATA genes will be a cornerstone to understand various plant TF characteristics including evolutionary insights.
Collapse
Affiliation(s)
- Mangi Kim
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Hong Xi
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Suhyeon Park
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Yunho Yun
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Jongsun Park
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea.
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea.
| |
Collapse
|